Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 122(12): 1958-1967, 2021 12.
Article in English | MEDLINE | ID: mdl-34617313

ABSTRACT

The mammalian HSP105/110 family consists of four members, including Hsp105 and Apg-1, which function as molecular chaperones. Recently, we reported that Hsp105 knockdown increases sensitivity to the DNA-damaging agent Adriamycin but decreases sensitivity to the microtubule-targeting agent paclitaxel. However, whether the other Hsp105/110 family proteins have the same functional property is unknown. Here, we show that Apg-1 has different roles from Hsp105 in cell proliferation, cell division, and drug sensitivity. We generated the Apg-1-knockdown HeLa S3 cells by lentiviral expression of Apg-1-targeting short hairpin RNA. Knockdown of Apg-1 but not Hsp105 decreased cell proliferation. Apg-1 knockdown increased cell death upon Adriamycin treatment without affecting paclitaxel sensitivity. The cell synchronization experiment suggests that Apg-1 functions in mitotic progression at a different mitotic subphase from Hsp105, which cause difference in paclitaxel sensitivity. Since Apg-1 is overexpressed in certain types of tumors, Apg-1 may become a potential therapeutic target for cancer treatment without causing resistance to the microtubule-targeting agents.


Subject(s)
Cell Division , Drug Resistance, Neoplasm , HSP110 Heat-Shock Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , HSP110 Heat-Shock Proteins/genetics , HeLa Cells , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics
2.
J Cell Biochem ; 120(10): 17951-17962, 2019 10.
Article in English | MEDLINE | ID: mdl-31173393

ABSTRACT

Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105ß exhibit distinct functions with different subcellular localizations. Hsp105ß localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105ß is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105ß is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.


Subject(s)
Cell Nucleus/metabolism , Doxorubicin/pharmacology , HSP110 Heat-Shock Proteins/metabolism , Nuclear Localization Signals/metabolism , Animals , COS Cells , Cell Death/drug effects , Cell Nucleus/drug effects , Cell Proliferation/drug effects , Chlorocebus aethiops , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Karyopherins/metabolism , Protein Transport/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...