Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(15): 24032-24044, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614656

ABSTRACT

Laser-induced damage threshold of transparent conductors, such as Indium Tin Oxide (ITO), is limited by their high optical absorption due to free carriers. However, the effective absorption of a transparent conductor thin film can be reduced by an order of magnitude, without changing the electrical characteristics of the film, when placed in a low electric field section of a multilayer coating. A Fabry-Perot thin film interference filter has both high transmittance and low electric field positions, so it is an ideal thin film structure for this application. Although Fabry-Perot interference filters are not known as particularly high laser-induced damage resistant coatings due to their resonant characteristics, a laser-induced damage threshold (LIDT) improvement of up to 8× was observed with this technique compared to single layer ITO coatings fabricated using either radio frequency magnetron sputtering or electron-beam deposition. Additionally, an approximately 4× LIDT improvement for a Fabry-Perot interference filter has been observed by the addition of ITO into the multilayer structure.

2.
Phys Rev Lett ; 121(3): 037001, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30085782

ABSTRACT

Inducing superconductivity in a topological insulator can lead to novel quantum effects. However, experimental approaches to turn a topological insulator into a superconductor are limited. Here, we report on superconductivity in topological insulator Bi_{0.91}Sb_{0.09} induced via focused ion-beam deposition of a Pt thin film. The superconducting phase exhibits a Berezinski-Kosterlitz-Thouless transition, demonstrative of its two-dimensional character. From the in-plane upper critical field measurements, we estimate the superconducting thickness to be ∼17 nm for a 5.5-µm-thick sample. Our results provide evidence that the interface superconductivity could originate from the surface states of Bi_{0.91}Sb_{0.09}.

3.
Appl Opt ; 53(4): A291-6, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24514230

ABSTRACT

Substrate defect planarization has been shown to increase the laser resistance of 1053 nm mirror coatings to greater than 100 J/cm2, an increase of 20-fold, when tested with 10 ns laser pulses. Substrate surface particles that are overcoated with optical interference mirror coatings become nodular defects, which behave as microlenses intensifying light into the defect structure. By a discrete process of angle-dependent ion etching and unidirectional ion-beam deposition, substrate defects can be reduced in cross-sectional area by over 90%.

4.
ACS Nano ; 6(9): 8366-80, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22913710

ABSTRACT

We observe single nanoparticle translocation events via resistive pulse sensing using silicon nitride pores described by a range of lengths and diameters. Pores are prepared by focused ion beam milling in 50 nm-, 100 nm-, and 500 nm-thick silicon nitride membranes with diameters fabricated to accommodate spherical silica nanoparticles with sizes chosen to mimic that of virus particles. In this manner, we are able to characterize the role of pore geometry in three key components of the detection scheme, namely, event magnitude, event duration, and event frequency. We find that the electric field created by the applied voltage and the pore's geometry is a critical factor. We develop approximations to describe this field, which are verified with computer simulations, and interactions between particles and this field. In so doing, we formulate what we believe to be the first approximation for the magnitude of ionic current blockage that explicitly addresses the invariance of access resistance of solid-state pores during particle translocation. These approximations also provide a suitable foundation for estimating the zeta potential of the particles and/or pore surface when studied in conjunction with event durations. We also verify that translocation achieved by electro-osmostic transport is an effective means of slowing translocation velocities of highly charged particles without compromising particle capture rate as compared to more traditional approaches based on electrophoretic transport.


Subject(s)
Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Computer Simulation , Materials Testing , Particle Size , Porosity
5.
Phys Rev Lett ; 108(2): 027601, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22324707

ABSTRACT

Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 1.1×10(10) atoms are compared to available experimental data on µm-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed.

6.
Science ; 314(5806): 1716-9, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170290

ABSTRACT

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.

7.
Science ; 314(5806): 1735-9, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17170295

ABSTRACT

The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.

SELECTION OF CITATIONS
SEARCH DETAIL