Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(3): 037001, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30085782

ABSTRACT

Inducing superconductivity in a topological insulator can lead to novel quantum effects. However, experimental approaches to turn a topological insulator into a superconductor are limited. Here, we report on superconductivity in topological insulator Bi_{0.91}Sb_{0.09} induced via focused ion-beam deposition of a Pt thin film. The superconducting phase exhibits a Berezinski-Kosterlitz-Thouless transition, demonstrative of its two-dimensional character. From the in-plane upper critical field measurements, we estimate the superconducting thickness to be ∼17 nm for a 5.5-µm-thick sample. Our results provide evidence that the interface superconductivity could originate from the surface states of Bi_{0.91}Sb_{0.09}.

2.
Appl Opt ; 53(4): A291-6, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24514230

ABSTRACT

Substrate defect planarization has been shown to increase the laser resistance of 1053 nm mirror coatings to greater than 100 J/cm2, an increase of 20-fold, when tested with 10 ns laser pulses. Substrate surface particles that are overcoated with optical interference mirror coatings become nodular defects, which behave as microlenses intensifying light into the defect structure. By a discrete process of angle-dependent ion etching and unidirectional ion-beam deposition, substrate defects can be reduced in cross-sectional area by over 90%.

3.
Phys Rev Lett ; 108(2): 027601, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22324707

ABSTRACT

Atomistic simulation data on crater formation due to the hypervelocity impact of nanoprojectiles of up to 55 nm diameter and with targets containing up to 1.1×10(10) atoms are compared to available experimental data on µm-, mm-, and cm-sized projectiles. We show that previous scaling laws do not hold in the nanoregime and outline the reasons: within our simulations we observe that the cratering mechanism changes, going from the smallest to the largest simulated scales, from an evaporative regime to a regime where melt and plastic flow dominate, as is expected in larger microscale experiments. The importance of the strain-rate dependence of strength and of dislocation production and motion are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL