Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982860

ABSTRACT

IgM is the first antibody to emerge during phylogeny, ontogeny, and immune responses and serves as a first line of defense. Effector proteins interacting with the Fc portion of IgM, such as complement and its receptors, have been extensively studied for their functions. IgM Fc receptor (FcµR), identified in 2009, is the newest member of the FcR family and is intriguingly expressed by lymphocytes only, suggesting the existence of distinct functions as compared to the FcRs for switched Ig isotypes, which are expressed by various immune and non-hematopoietic cells as central mediators of antibody-triggered responses by coupling the adaptive and innate immune responses. Results from FcµR-deficient mice suggest a regulatory function of FcµR in B cell tolerance, as evidenced by their propensity to produce autoantibodies of both IgM and IgG isotypes. In this article, we discuss conflicting views about the cellular distribution and potential functions of FcµR. The signaling function of the Ig-tail tyrosine-like motif in the FcµR cytoplasmic domain is now formally shown by substitutional experiments with the IgG2 B cell receptor. The potential adaptor protein associating with FcµR and the potential cleavage of its C-terminal cytoplasmic tail after IgM binding are still enigmatic. Critical amino acid residues in the Ig-like domain of FcµR for interacting with the IgM Cµ4 domain and the mode of interaction are now defined by crystallographic and cryo-electron microscopic analyses. Some discrepancies on these interactions are discussed. Finally, elevated levels of a soluble FcµR isoform in serum samples are described as the consequence of persistent B cell receptor stimulation, as seen in chronic lymphocytic leukemia and probably in antibody-mediated autoimmune disorders.


Subject(s)
Receptors, Antigen, B-Cell , Receptors, Fc , Animals , Mice , Immunoglobulin M , Receptors, Fc/metabolism , Protein Isoforms
2.
Front Immunol ; 13: 863895, 2022.
Article in English | MEDLINE | ID: mdl-35784336

ABSTRACT

The FcR for IgM (FcµR) is the newest member of the FcR family, selectively expressed by lymphocytes, and distinct from FcRs for switched Ig isotypes that are expressed by various immune cell types and non-hematopoietic cells. From studies of Fcmr-ablated mice, FcµR was shown to have a regulatory function in B-cell tolerance, as evidenced by high serum titers of autoantibodies of the IgM and IgG isotypes in mutant mice. In our previous studies, both cell-surface and serum FcµR levels were elevated in patients with chronic lymphocytic leukemia (CLL), where antigen-independent self-ligation of BCR is a hallmark of the neoplastic B cells. This was assessed by sandwich ELISA using two different ectodomain-specific mAbs. To determine whether the serum FcµR is derived from cleavage of its cell-surface receptor (shedding) or its alternative splicing to skip the transmembrane exon resulting in a 70-aa unique hydrophilic C-terminus (soluble), we developed a new mouse IgG1κ mAb specific for human soluble FcµR (solFcµR) by taking advantages of the unique nature of transductant stably producing His-tagged solFcµR and of an in vivo differential immunization. His-tagged solFcµR attached to exosomes and plasma membranes, allowing immunization and initial hybridoma screening without purification of solFcµR. Differential immunization with tolerogen (membrane FcµR) and immunogen (solFcµR) also facilitated to generate solFcµR-specific hybridomas. The resultant solFcµR-specific mAb reacted with serum FcµR in subsets of CLL patients. This mAb, along with another ectodomain-specific mAb, will be used for verifying the hypothesis that the production of solFcµR is the consequence of chronic stimulation of BCR.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Fc , Animals , Antibodies, Monoclonal , Antigens , B-Lymphocytes , Immunoglobulin M , Immunosuppressive Agents , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mice
3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209905

ABSTRACT

Both non-immune "natural" and antigen-induced "immune" IgM are important for protection against pathogens and for regulation of immune responses to self-antigens. Since the bona fide IgM Fc receptor (FcµR) was identified in humans by a functional cloning strategy in 2009, the roles of FcµR in these IgM effector functions have begun to be explored. In this short essay, we describe the differences between human and mouse FcµRs in terms of their identification processes, cellular distributions and ligand binding activities with emphasis on our recent findings from the mutational analysis of human FcµR. We have identified at least three sites of human FcµR, i.e., Asn66 in the CDR2, Lys79 to Arg83 in the DE loop and Asn109 in the CDR3, responsible for its constitutive IgM-ligand binding. Results of computational structural modeling analysis are consistent with these mutational data and a model of the ligand binding, Ig-like domain of human FcµR is proposed. Serendipitously, substitution of Glu41 and Met42 in the CDR1 of human FcµR with mouse equivalents Gln and Leu, either single or more prominently in combination, enhances both the receptor expression and IgM binding. These findings would help in the future development of preventive and therapeutic interventions targeting FcµR.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/chemistry , Binding Sites , Cloning, Molecular , Humans , Immunoglobulin M/metabolism , Ligands , Membrane Proteins/chemistry , Mice , Models, Molecular , Mutation , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL