Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Res Sq ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699335

ABSTRACT

Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results: We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.

2.
medRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38464320

ABSTRACT

Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results: We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.

3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338761

ABSTRACT

Childhood maltreatment is an important risk factor for adult depression and has been associated with changes in the hypothalamic pituitary adrenal (HPA) axis, including cortisol secretion and methylation of the FKBP5 gene. Furthermore, associations between depression and HPA changes have been reported. This study investigated the associations of whole-blood FKBP5 mRNA levels, serum cortisol levels, childhood maltreatment, and depressive symptoms with the whole-blood methylation status (assessed via target bisulfite sequencing) of 105 CpGs at the FKBP5 locus using data from the general population-based Study of Health in Pomerania (SHIP) (N = 203). Both direct and interaction effects with the rs1360780 single-nucleotide polymorphism were investigated. Nominally significant associations of main effects on methylation of a single CpG site were observed at intron 3, intron 7, and the 3'-end of the gene. Additionally, methylation at two clusters at the 3'-end and intron 7 were nominally associated with childhood maltreatment × rs1360780 and depressive symptoms × rs1360780, respectively. The results add to the understanding of molecular mechanisms underlying the emergence of depression and could aid the development of personalised depression therapy and drug development.


Subject(s)
Child Abuse , DNA Methylation , Depressive Disorder , Tacrolimus Binding Proteins , Adult , Child , Humans , Depressive Disorder/genetics , Hydrocortisone , Hypothalamo-Hypophyseal System/metabolism , Introns/genetics , Pituitary-Adrenal System/metabolism , Polymorphism, Single Nucleotide , Tacrolimus Binding Proteins/genetics
4.
Article in English | MEDLINE | ID: mdl-38355654

ABSTRACT

BACKGROUND: Genome-wide association studies have reported a genetic overlap between borderline personality disorder (BPD) and schizophrenia (SCZ). Epidemiologically, the direction and causality of the association between thyroid function and risk of BPD and SCZ are unclear. We aim to test whether genetically predicted variations in TSH and FT4 levels or hypothyroidism are associated with the risk of BPD and SCZ. METHODS: We employed Mendelian Randomisation (MR) analyses using genetic instruments associated with TSH and FT4 levels as well as hypothyroidism to examine the effects of genetically predicted thyroid function on BPD and SCZ risk. Bidirectional MR analyses were employed to investigate a potential reverse causal association. RESULTS: Genetically predicted higher FT4 was not associated with the risk of BPD (OR: 1.18; P = 0.60, IVW) or the risk of SCZ (OR: 0.93; P = 0.19, IVW). Genetically predicted higher TSH was not associated with the risk of BPD (OR: 1.11; P = 0.51, IVW) or SCZ (OR: 0.98, P = 0.55, IVW). Genetically predicted hypothyroidism was not associated with BPD or SCZ. We found no evidence for a reverse causal effect between BPD or SCZ on thyroid function. CONCLUSIONS: We report evidence for a null association between genetically predicted FT4, TSH or hypothyroidism with BPD or SCZ risk. There was no evidence for reverse causality.

5.
Alzheimers Res Ther ; 16(1): 14, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245754

ABSTRACT

BACKGROUND: Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia. METHODS: We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes. RESULTS: The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues. CONCLUSIONS: VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.


Subject(s)
Genome-Wide Association Study , MicroRNAs , Humans , Aged , Genome-Wide Association Study/methods , Multiomics , Memory , Cognition , Polymorphism, Single Nucleotide/genetics
6.
Clin Gastroenterol Hepatol ; 22(2): 283-294.e5, 2024 02.
Article in English | MEDLINE | ID: mdl-37716616

ABSTRACT

BACKGROUND & AIMS: α1-Antitrypsin (AAT) is a major protease inhibitor produced by hepatocytes. The most relevant AAT mutation giving rise to AAT deficiency (AATD), the 'Pi∗Z' variant, causes harmful AAT protein accumulation in the liver, shortage of AAT in the systemic circulation, and thereby predisposes to liver and lung injury. Although intravenous AAT augmentation constitutes an established treatment of AATD-associated lung disease, its impact on the liver is unknown. METHODS: Liver-related parameters were assessed in a multinational cohort of 760 adults with severe AATD (Pi∗ZZ genotype) and available liver phenotyping, of whom 344 received augmentation therapy and 416 did not. Liver fibrosis was evaluated noninvasively via the serum test AST-to-platelet ratio index and via transient elastography-based liver stiffness measurement. Histologic parameters were compared in 15 Pi∗ZZ adults with and 35 without augmentation. RESULTS: Compared with nonaugmented subjects, augmented Pi∗ZZ individuals displayed lower serum liver enzyme levels (AST 71% vs 75% upper limit of normal, P < .001; bilirubin 49% vs 58% upper limit of normal, P = .019) and lower surrogate markers of fibrosis (AST-to-platelet ratio index 0.34 vs 0.38, P < .001; liver stiffness measurement 6.5 vs 7.2 kPa, P = .005). Among biopsied participants, augmented individuals had less pronounced liver fibrosis and less inflammatory foci but no differences in AAT accumulation were noted. CONCLUSIONS: The first evaluation of AAT augmentation on the Pi∗ZZ-related liver disease indicates liver safety of a widely used treatment for AATD-associated lung disease. Prospective studies are needed to confirm the beneficial effects and to demonstrate the potential efficacy of exogenous AAT in patients with Pi∗ZZ-associated liver disease.


Subject(s)
alpha 1-Antitrypsin Deficiency , Adult , Humans , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/drug therapy , Genotype , Liver Cirrhosis/etiology , Phenotype
8.
Calcif Tissue Int ; 113(5): 540-551, 2023 11.
Article in English | MEDLINE | ID: mdl-37831088

ABSTRACT

Osteoporosis, a complex chronic disease with increasing prevalence, is characterised by reduced bone mineral density (BMD) and increased fracture risk. The high heritability of BMD suggests substantial impact of the individual genetic disposition on bone phenotypes and the development of osteoporosis. In the past years, genome-wide association studies (GWAS) identified hundreds of genetic variants associated with BMD or osteoporosis. Here, we analysed 1103 single nucleotide polymorphisms (SNPs), previously identified as associated with estimated BMD (eBMD) in the UK Biobank. We assessed whether these SNPs are related to heel stiffness index obtained by quantitative ultrasound in 5665 adult participants of the Study of Health in Pomerania (SHIP). We confirmed 45 significant associations after correction for multiple testing. Next, we analysed six selected SNPs in 631 patients evaluated for osteoporosis [rs2707518 (CPED1/WNT16), rs3779381 (WNT16), rs115242848 (LOC101927709/EN1), rs10239787 (JAZF1), rs603424 (PKD2L1) and rs6968704 (JAZF1)]. Differences in minor allele frequencies (MAF) of rs2707518 and rs3779381 between SHIP participants (higher MAF) and patients evaluated for osteoporosis (lower MAF) indicated a protective effect of the minor allele on bone integrity. In contrast, differences in MAF of rs603424 indicated a harmful effect. Co-localisation analyses indicated that the rs603424 effect may be mediated via stearoyl-CoA desaturase (SCD) expression, an enzyme highly expressed in adipose tissue with a crucial role in lipogenesis. Taken together, our results support the role of the WNT16 pathway in the regulation of bone properties and indicate a novel causal role of SCD expression in adipose tissue on bone integrity.


Subject(s)
Calcaneus , Fractures, Bone , Osteoporosis , Adult , Humans , Bone Density/genetics , Genome-Wide Association Study , Heel , Fractures, Bone/genetics , Osteoporosis/diagnostic imaging , Osteoporosis/genetics , Calcaneus/diagnostic imaging , Calcaneus/physiology , Polymorphism, Single Nucleotide , Receptors, Cell Surface , Calcium Channels/genetics , Wnt Proteins/genetics
9.
J Clin Med ; 12(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37685830

ABSTRACT

High serum thyroid-stimulating hormone (TSH) levels have previously been associated with a low estimated glomerular filtration rate (eGFR), but studies associating thyroid hormone levels with albuminuria revealed inconsistent results. We used cross-sectional data from 7933 individuals aged 20 to 93 years of the Berlin Aging Study II and the Study of Health in Pomerania to associate serum TSH, fT3, and fT4 levels with eGFR and albuminuria. In multivariable analyses adjusted for confounding, we found inverse non-linear associations of serum TSH levels with eGFR, while serum fT3 levels showed a positive association with eGFR. High as well as low serum fT4 levels were associated with a lower eGFR. Age but not sex modified the association between thyroid hormone levels and eGFR. The inverse associations between serum TSH levels and eGFR were strongest in the youngest age groups, while the positive associations between serum fT3 levels and eGFR were strongest in older individuals. No significant associations between thyroid hormone levels and albuminuria were found. Our results indicate that hypothyroidism might be associated with a reduced kidney function. Thyroid function might be more tightly related to the eGFR than to albuminuria in the general population.

10.
Thyroid ; 33(12): 1476-1482, 2023 12.
Article in English | MEDLINE | ID: mdl-37772697

ABSTRACT

Background: Increased height has been associated with increased risk of hypothyroidism or thyroid cancer in epidemiological studies. However, the potential causal association between height and hypothyroidism or thyroid cancer has not been thoroughly explored. Autoimmune thyroid disease (AITD) mainly presents as hypothyroidism, thus we aim to evaluate the causal relationship between height as exposure and its association with AITD or thyroid cancer. Methods: Mendelian randomization (MR) analyses were performed by using genetic instruments associated with height, which were selected from the largest genome-wide association meta-analysis for height in up to 5.4 million individuals. Summary-level data for AITD and thyroid cancer (including 30,234 and 3001 cases, respectively) were collected from the large number of available genome-wide association studies. Bidirectional MR was performed to test for reverse causal association between AITD and adult height. Results: MR analyses showed that increased genetically predicted height was associated with a 4% increased risk of AITD ([CI 1.02 to 1.07], p-value = 1.99E-03) per 1-standard deviation (SD) increase in genetically predicted height. The bidirectional MR did not show any causal association between AITD and adult height. Additionally, increased genetically predicted height was associated with 15% increased risk of thyroid cancer ([CI 1.07 to 1.23], p-value = 2.32E-04) per 1-SD increase in height. Sensitivity analysis confirmed the main results. Conclusions: This MR study showed that 1-SD increase in genetically predicted height was associated with increased risk of AITD and thyroid cancer. In contrast, there was no evidence of a causal association of genetically predicted AITD with height. These results could further aid in investigation of height-related pathways as a means of gaining new mechanistic insights into AITD and thyroid cancer.


Subject(s)
Hashimoto Disease , Hypothyroidism , Thyroid Neoplasms , Adult , Humans , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Hypothyroidism/genetics , Thyroid Neoplasms/genetics , Polymorphism, Single Nucleotide
11.
medRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214898

ABSTRACT

Genome-wide association studies have unearthed a wealth of genetic associations across many complex diseases. However, translating these associations into biological mechanisms contributing to disease etiology and heterogeneity has been challenging. Here, we hypothesize that the effects of disease-associated genetic variants converge onto distinct cell type specific molecular pathways within distinct subgroups of patients. In order to test this hypothesis, we develop the CASTom-iGEx pipeline to operationalize individual level genotype data to interpret personal polygenic risk and identify the genetic basis of clinical heterogeneity. The paradigmatic application of this approach to coronary artery disease and schizophrenia reveals a convergence of disease associated variant effects onto known and novel genes, pathways, and biological processes. The biological process specific genetic liabilities are not equally distributed across patients. Instead, they defined genetically distinct groups of patients, characterized by different profiles across pathways, endophenotypes, and disease severity. These results provide further evidence for a genetic contribution to clinical heterogeneity and point to the existence of partially distinct pathomechanisms across patient subgroups. Thus, the universally applicable approach presented here has the potential to constitute an important component of future personalized medicine concepts.

12.
Eur Thyroid J ; 12(4)2023 08 01.
Article in English | MEDLINE | ID: mdl-37074673

ABSTRACT

Objective: Thyroid hormone (TH) transport represents a critical first step in governing intracellular TH regulation. It is still unknown whether the full repertoire of TH transporters has been identified. Members of the solute carrier (SLC) 22 family have substrates in common with the known TH transporters of the organic anion-transporting peptide family. Therefore, we screened the SLC22 family for TH transporters. Methods: Uptake of 1 nM of iodothyronines or sulfated iodothyronines in COS1 cells expressing SLC22 proteins was performed. Results: We first tested 25 mouse (m) SLC22 proteins for TH uptake and found that the majority of the organic anion transporter (OAT) clade were capable of 3,3',5-triiodothyronine and/or thyroxine (T4) transport. Based on phylogenetic tree analysis of the mouse and human (h) SLC22 family, we selected eight hSLC22s that grouped with the newly identified mouse TH transporters. Of these, four tested positive for uptake of one or more substrates, particularly hSLC22A11 showed robust (3-fold over control) uptake of T4. Uptake of sulfated iodothyronines was strongly (up to 17-fold) induced by some SLC22s, most notably SLC22A8, hSLC22A9, mSLC22A27 and mSLC22A29. Finally, the zebrafish orthologues of SLC22A6/8 drOatx and drSlc22a6l also transported almost all (sulfated) iodothyronines tested. The OAT inhibitors lesinurad and probenecid inhibited most SLC22 proteins. Conclusions: Our results demonstrated that members of the OAT clade of the SLC22 family constitute a novel, evolutionary conserved group of transporters for (sulfated) iodothyronines. Future studies should reveal the relevance of these transporters in TH homeostasis and physiology.


Subject(s)
Organic Anion Transporters , Zebrafish , Humans , Mice , Animals , Phylogeny , Zebrafish/metabolism , Sulfates/metabolism , Thyroid Hormones , Membrane Transport Proteins/genetics , Organic Anion Transporters/genetics
13.
Nat Commun ; 14(1): 1271, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882394

ABSTRACT

Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable to summary-level reference eQTL datasets. The development of TWAS methods that can harness summary-level reference data is valuable to enable TWAS in broader settings and enhance power due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool by both simulations and application studies.


Subject(s)
Otters , Animals , Multifactorial Inheritance , Risk Factors , Sample Size , Transcriptome
14.
Nat Commun ; 14(1): 1287, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36890159

ABSTRACT

Genome-wide association studies have discovered hundreds of associations between common genotypes and kidney function but cannot comprehensively investigate rare coding variants. Here, we apply a genotype imputation approach to whole exome sequencing data from the UK Biobank to increase sample size from 166,891 to 408,511. We detect 158 rare variants and 105 genes significantly associated with one or more of five kidney function traits, including genes not previously linked to kidney disease in humans. The imputation-powered findings derive support from clinical record-based kidney disease information, such as for a previously unreported splice allele in PKD2, and from functional studies of a previously unreported frameshift allele in CLDN10. This cost-efficient approach boosts statistical power to detect and characterize both known and novel disease susceptibility variants and genes, can be generalized to larger future studies, and generates a comprehensive resource ( https://ckdgen-ukbb.gm.eurac.edu/ ) to direct experimental and clinical studies of kidney disease.


Subject(s)
Exome , Genome-Wide Association Study , Humans , Exome/genetics , Biological Specimen Banks , Kidney , United Kingdom , Polymorphism, Single Nucleotide
15.
Diabetes Obes Metab ; 25(7): 1803-1812, 2023 07.
Article in English | MEDLINE | ID: mdl-36855799

ABSTRACT

AIM: To examine the association between body mass index (BMI)-independent allometric body shape indices and kidney function. MATERIALS AND METHODS: We performed a two-sample Mendelian randomization (MR) analysis, using summary statistics from UK Biobank, CKDGen and DIAGRAM. BMI-independent allometric body shape indices were: A Body Shape Index (ABSI), Waist-Hip Index (WHI) and Hip Index (HI). Kidney function outcomes were: urinary albumin-to-creatinine ratio (UACR), estimated glomerular filtration rate and blood urea nitrogen. Furthermore, we investigated type 2 diabetes (T2D) as a potential mediator on the pathway to albuminuria. The main analysis was inverse variance-weighted random-effects MR in participants of European ancestry. We also performed several sensitivity MR analyses. RESULTS: A 1-standard deviation (SD) increase in genetically predicted ABSI and WHI levels was associated with higher UACR (ß = 0.039 [95% confidence interval: 0.016, 0.063] log [UACR], P = 0.001 for ABSI, and ß = 0.028 [0.012, 0.044] log [UACR], P = 6 x 10-4 for WHI) in women, but not in men. Meanwhile, a 1-SD increase in genetically predicted HI was associated with lower UACR in women (ß = -0.021 [-0.041, 0.000] log [UACR], P = 0.05) and in men (ß = -0.026 [-0.058, 0.005] log [UACR], P = 0.10). Corresponding estimates in individuals with diabetes were substantially augmented. Risk of T2D increased for genetically high ABSI and WHI in women (P < 6 x 10-19 ) only, but decreased for genetically high HI in both sexes (P < 9 x 10-3 ). No other associations were observed. CONCLUSIONS: Genetically high HI was associated with decreased risk of albuminuria, mediated through decreased T2D risk in both sexes. Opposite associations applied to genetically high ABSI and WHI in women only.


Subject(s)
Diabetes Mellitus, Type 2 , Male , Humans , Female , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Albuminuria/genetics , Albuminuria/complications , Mendelian Randomization Analysis , Somatotypes , Glomerular Filtration Rate , Kidney , Genome-Wide Association Study
16.
Thyroid ; 33(3): 301-311, 2023 03.
Article in English | MEDLINE | ID: mdl-36719767

ABSTRACT

Background: Thyroid hormones play a key role in differentiation and metabolism and are known regulators of gene expression through both genomic and epigenetic processes including DNA methylation. The aim of this study was to examine associations between thyroid hormones and DNA methylation. Methods: We carried out a fixed-effect meta-analysis of epigenome-wide association study (EWAS) of blood DNA methylation sites from 8 cohorts from the ThyroidOmics Consortium, incorporating up to 7073 participants of both European and African ancestry, implementing a discovery and replication stage. Statistical analyses were conducted using normalized beta CpG values as dependent and log-transformed thyrotropin (TSH), free thyroxine, and free triiodothyronine levels, respectively, as independent variable in a linear model. The replicated findings were correlated with gene expression levels in whole blood and tested for causal influence of TSH and free thyroxine by two-sample Mendelian randomization (MR). Results: Epigenome-wide significant associations (p-value <1.1E-7) of three CpGs for free thyroxine, five for free triiodothyronine, and two for TSH concentrations were discovered and replicated (combined p-values = 1.5E-9 to 4.3E-28). The associations included CpG sites annotated to KLF9 (cg00049440) and DOT1L (cg04173586) that overlap with all three traits, consistent with hypothalamic-pituitary-thyroid axis physiology. Significant associations were also found for CpGs in FKBP5 for free thyroxine, and at CSNK1D/LINCO1970 and LRRC8D for free triiodothyronine. MR analyses supported a causal effect of thyroid status on DNA methylation of KLF9. DNA methylation of cg00049440 in KLF9 was inversely correlated with KLF9 gene expression in blood. The CpG at CSNK1D/LINC01970 overlapped with thyroid hormone receptor alpha binding peaks in liver cells. The total additive heritability of the methylation levels of the six significant CpG sites was between 25% and 57%. Significant methylation QTLs were identified for CpGs at KLF9, FKBP5, LRRC8D, and CSNK1D/LINC01970. Conclusions: We report novel associations between TSH, thyroid hormones, and blood-based DNA methylation. This study advances our understanding of thyroid hormone action particularly related to KLF9 and serves as a proof-of-concept that integrations of EWAS with other -omics data can provide a valuable tool for unraveling thyroid hormone signaling in humans by complementing and feeding classical in vitro and animal studies.


Subject(s)
Epigenome , Triiodothyronine , Humans , Thyroid Gland , Thyroxine/genetics , CpG Islands , Genome-Wide Association Study , Kruppel-Like Transcription Factors/genetics
18.
J Thromb Haemost ; 21(5): 1135-1147, 2023 05.
Article in English | MEDLINE | ID: mdl-36716967

ABSTRACT

BACKGROUND: Fibrinogen plays an essential role in blood coagulation and inflammation. Circulating fibrinogen levels may be determined based on interindividual differences in DNA methylation at cytosine-phosphate-guanine (CpG) sites and vice versa. OBJECTIVES: To perform an EWAS to examine an association between blood DNA methylation levels and circulating fibrinogen levels to better understand its biological and pathophysiological actions. METHODS: We performed an epigenome-wide association study of circulating fibrinogen levels in 18 037 White, Black, American Indian, and Hispanic participants, representing 14 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. Circulating leukocyte DNA methylation was measured using the Illumina 450K array in 12 904 participants and using the EPIC array in 5133 participants. In each study, an epigenome-wide association study of fibrinogen was performed using linear mixed models adjusted for potential confounders. Study-specific results were combined using array-specific meta-analysis, followed by cross-replication of epigenome-wide significant associations. We compared models with and without CRP adjustment to examine the role of inflammation. RESULTS: We identified 208 and 87 significant CpG sites associated with fibrinogen levels from the 450K (p < 1.03 × 10-7) and EPIC arrays (p < 5.78 × 10-8), respectively. There were 78 associations from the 450K array that replicated in the EPIC array and 26 vice versa. After accounting for overlapping sites, there were 83 replicated CpG sites located in 61 loci, of which only 4 have been previously reported for fibrinogen. The examples of genes located near these CpG sites were SOCS3 and AIM2, which are involved in inflammatory pathways. The associations of all 83 replicated CpG sites were attenuated after CRP adjustment, although many remained significant. CONCLUSION: We identified 83 CpG sites associated with circulating fibrinogen levels. These associations are partially driven by inflammatory pathways shared by both fibrinogen and CRP.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Genome-Wide Association Study/methods , Genetic Loci , Inflammation/genetics , Fibrinogen/genetics , CpG Islands
19.
Brain ; 146(2): 492-506, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35943854

ABSTRACT

Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at ∼450 000 cytosine-phosphate-guanine (CpG) sites in 9732 middle-aged to older adults from 14 community-based studies. Single CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5) and co-localized with FOLH1 expression in brain (posterior probability = 0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis and multi-omics co-localization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug-repositioning analysis indicated antihyperlipidaemic agents, more specifically peroxisome proliferator-activated receptor-alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood-brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidaemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood-brain barrier disruption.


Subject(s)
White Matter , Middle Aged , Humans , Aged , White Matter/diagnostic imaging , Genome-Wide Association Study/methods , Brain/diagnostic imaging , DNA Methylation/genetics , Magnetic Resonance Imaging , Epigenesis, Genetic , Protein-Arginine N-Methyltransferases , Repressor Proteins
20.
Front Endocrinol (Lausanne) ; 14: 1232266, 2023.
Article in English | MEDLINE | ID: mdl-38169598

ABSTRACT

Context: Chronic kidney disease (CKD) is a public health burden worldwide. Epidemiological studies observed an association between sex hormones, including estradiol, and kidney function. Objective: We conducted a Mendelian randomization (MR) study to assess a possible causal effect of estradiol levels on kidney function in males and females. Design: We performed a bidirectional two-sample MR using published genetic associations of serum levels of estradiol in men (n = 206,927) and women (n = 229,966), and of kidney traits represented by estimated glomerular filtration rate (eGFR, n = 567,460), urine albumin-to-creatinine ratio (UACR, n = 547,361), and CKD (n = 41,395 cases and n = 439,303 controls) using data obtained from the CKDGen Consortium. Additionally, we conducted a genome-wide association study using UK Biobank cohort study data (n = 11,798 men and n = 6,835 women) to identify novel genetic associations with levels of estradiol, and then used these variants as instruments in a one-sample MR. Results: The two-sample MR indicated that genetically predicted estradiol levels are significantly associated with eGFR in men (beta = 0.077; p = 5.2E-05). We identified a single locus at chromosome 14 associated with estradiol levels in men being significant in the one-sample MR on eGFR (beta = 0.199; p = 0.017). We revealed significant results with eGFR in postmenopausal women and with UACR in premenopausal women, which did not reach statistical significance in the sensitivity MR analyses. No causal effect of eGFR or UACR on estradiol levels was found. Conclusions: We conclude that serum estradiol levels may have a causal effect on kidney function. Our MR results provide starting points for studies to develop therapeutic strategies to reduce kidney disease.


Subject(s)
Mendelian Randomization Analysis , Renal Insufficiency, Chronic , Male , Humans , Female , Cohort Studies , Genome-Wide Association Study , Kidney , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/genetics , Estradiol
SELECTION OF CITATIONS
SEARCH DETAIL
...