Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7762, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040699

ABSTRACT

Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.


Subject(s)
Rhabdoid Tumor , Humans , Child , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , Transcription Factors/genetics , Mutation , Promoter Regions, Genetic/genetics , Carcinogenesis/genetics
2.
Cell Rep ; 42(10): 113124, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37733591

ABSTRACT

Acquired drug resistance is a major problem in the treatment of cancer. hTERT-immortalized, untransformed RPE-1 cells can acquire resistance to Taxol by derepressing the ABCB1 gene, encoding for the multidrug transporter P-gP. Here, we investigate how the ABCB1 gene is derepressed. ABCB1 activation is associated with reduced H3K9 trimethylation, increased H3K27 acetylation, and ABCB1 displacement from the nuclear lamina. While altering DNA methylation and H3K27 methylation had no major impact on ABCB1 expression, nor did it promote resistance, disrupting the nuclear lamina component Lamin B Receptor did promote the acquisition of a Taxol-resistant phenotype in a subset of cells. CRISPRa-mediated gene activation supported the notion that lamina dissociation influences ABCB1 derepression. We propose a model in which nuclear lamina dissociation of a repressed gene allows for its activation, implying that deregulation of the 3D genome topology could play an important role in tumor evolution and the acquisition of drug resistance.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Humans , Drug Resistance, Neoplasm/genetics , Paclitaxel/pharmacology , Drug Resistance, Multiple/genetics , Neoplasms/genetics , DNA Methylation/genetics , Cell Line, Tumor
3.
EMBO J ; 42(20): e113150, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37691488

ABSTRACT

Genome-wide transcriptional activity involves the binding of many transcription factors (TFs) to thousands of sites in the genome. Pioneer TFs are a class of TFs that maintain open chromatin and allow non-pioneer TFs access to their target sites. Determining which TF binding sites directly drive transcription remains a challenge. Here, we use acute protein depletion of the pioneer TF SOX2 to establish its functionality in maintaining chromatin accessibility. We show that thousands of accessible sites are lost within an hour of protein depletion, indicating rapid turnover of these sites in the absence of the pioneer factor. To understand the relationship with transcription, we performed nascent transcription analysis and found that open chromatin sites that are maintained by SOX2 are highly predictive of gene expression, in contrast to all other SOX2 binding sites. We use CRISPR-Cas9 genome editing in the Klf2 locus to functionally validate a predicted regulatory element. We conclude that the regulatory activity of SOX2 is exerted mainly at sites where it maintains accessibility and that other binding sites are largely dispensable for gene regulation.


Subject(s)
Chromatin , SOXB1 Transcription Factors , Transcription Factors , Binding Sites , Chromatin/genetics , Gene Expression Regulation , Protein Binding , Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , Mice
4.
EMBO Rep ; 23(12): e55782, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36245428

ABSTRACT

Ki-67 is a chromatin-associated protein with a dynamic distribution pattern throughout the cell cycle and is thought to be involved in chromatin organization. The lack of genomic interaction maps has hampered a detailed understanding of its roles, particularly during interphase. By pA-DamID mapping in human cell lines, we find that Ki-67 associates with large genomic domains that overlap mostly with late-replicating regions. Early in interphase, when Ki-67 is present in pre-nucleolar bodies, it interacts with these domains on all chromosomes. However, later in interphase, when Ki-67 is confined to nucleoli, it shows a striking shift toward small chromosomes. Nucleolar perturbations indicate that these cell cycle dynamics correspond to nucleolar maturation during interphase, and suggest that nucleolar sequestration of Ki-67 limits its interactions with larger chromosomes. Furthermore, we demonstrate that Ki-67 does not detectably control chromatin-chromatin interactions during interphase, but it competes with the nuclear lamina for interaction with late-replicating DNA, and it controls replication timing of (peri)centromeric regions. Together, these results reveal a highly dynamic choreography of genome interactions and roles for Ki-67 in heterochromatin organization.


Subject(s)
Genomics , Heterochromatin , Humans , Heterochromatin/genetics , Ki-67 Antigen/genetics
5.
Nat Commun ; 13(1): 754, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136067

ABSTRACT

The genome consists of regions of transcriptionally active euchromatin and more silent heterochromatin. We reveal that the formation of heterochromatin domains requires cohesin turnover on DNA. Stabilization of cohesin on DNA through depletion of its release factor WAPL leads to a near-complete loss of heterochromatin domains. We observe the opposite phenotype in cells deficient for subunits of the Mediator-CDK module, with an almost binary partition of the genome into dense H3K9me3 domains, and regions devoid of H3K9me3 spanning the rest of the genome. We suggest that the Mediator-CDK module might contribute to gene expression by limiting the formation of dense heterochromatin domains. WAPL deficiency prevents the formation of heterochromatin domains, and allows for gene expression even in the absence of the Mediator-CDK subunit MED12. We propose that cohesin and Mediator affect heterochromatin in different ways to enable the correct distribution of epigenetic marks, and thus to ensure proper gene expression.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Heterochromatin/metabolism , Mediator Complex/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Carrier Proteins/genetics , Cell Line , Chromatin Immunoprecipitation Sequencing , Epigenesis, Genetic , Gene Knockout Techniques , Humans , Mediator Complex/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins/genetics , RNA-Seq , Cohesins
6.
EMBO Rep ; 23(2): e53902, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34927791

ABSTRACT

The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double-strand breaks (DSBs) at desired genomic locations and study the DNA damage response and its consequences. Many systems for sgRNA delivery have been reported in order to efficiently generate this DSB, including lentiviral vectors. However, some of the consequences of these systems are not yet well understood. Here, we report that lentiviral-based sgRNA vectors can integrate into the endogenous genomic target location, leading to undesired activation of the target gene. By generating a DSB in the regulatory region of the ABCB1 gene using a lentiviral sgRNA vector, we can induce the formation of Taxol-resistant colonies. We show that these colonies upregulate ABCB1 via integration of the EEF1A1 and the U6 promoters from the sgRNA vector. We believe that this is an unreported CRISPR/Cas9 on-target effect that researchers need to be aware of when using lentiviral vectors for genome editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Transcriptional Activation
7.
Nat Commun ; 12(1): 4360, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272384

ABSTRACT

The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Chromatin/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Glucocorticoids/pharmacology , Lung Neoplasms/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/drug effects , Chromatin/genetics , Chromatin Immunoprecipitation Sequencing , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Imidazoles/pharmacology , Immunohistochemistry , Lung Neoplasms/genetics , Mice , Proteomics , Pyrazines/pharmacology , RNA, Small Interfering , RNA-Seq , Receptor, IGF Type 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
8.
Science ; 372(6545): 984-989, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34045355

ABSTRACT

We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.


Subject(s)
Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/physiology , Biological Evolution , Chromosomes/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Eukaryota/genetics , Genome , Multiprotein Complexes/genetics , Multiprotein Complexes/physiology , Adenosine Triphosphatases/chemistry , Algorithms , Animals , Cell Nucleolus/ultrastructure , Cell Nucleus/ultrastructure , Centromere/ultrastructure , Chromosomes/chemistry , Chromosomes, Human/chemistry , Chromosomes, Human/ultrastructure , DNA-Binding Proteins/chemistry , Genome, Human , Genomics , Heterochromatin/ultrastructure , Humans , Interphase , Mitosis , Models, Biological , Multiprotein Complexes/chemistry , Telomere/ultrastructure
9.
NAR Genom Bioinform ; 3(2): lqab040, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34046591

ABSTRACT

Conformation capture-approaches like Hi-C can elucidate chromosome structure at a genome-wide scale. Hi-C datasets are large and require specialised software. Here, we present GENOVA: a user-friendly software package to analyse and visualise chromosome conformation capture (3C) data. GENOVA is an R-package that includes the most common Hi-C analyses, such as compartment and insulation score analysis. It can create annotated heatmaps to visualise the contact frequency at a specific locus and aggregate Hi-C signal over user-specified genomic regions such as ChIP-seq data. Finally, our package supports output from the major mapping-pipelines. We demonstrate the capabilities of GENOVA by analysing Hi-C data from HAP1 cell lines in which the cohesin-subunits SA1 and SA2 were knocked out. We find that ΔSA1 cells gain intra-TAD interactions and increase compartmentalisation. ΔSA2 cells have longer loops and a less compartmentalised genome. These results suggest that cohesinSA1 forms longer loops, while cohesinSA2 plays a role in forming and maintaining intra-TAD interactions. Our data supports the model that the genome is provided structure in 3D by the counter-balancing of loop formation on one hand, and compartmentalization on the other hand. By differentially controlling loops, cohesinSA1 and cohesinSA2 therefore also affect nuclear compartmentalization. We show that GENOVA is an easy to use R-package, that allows researchers to explore Hi-C data in great detail.

10.
Nat Genet ; 53(1): 100-109, 2021 01.
Article in English | MEDLINE | ID: mdl-33318687

ABSTRACT

The cohesin complex has an essential role in maintaining genome organization. However, its role in gene regulation remains largely unresolved. Here we report that the cohesin release factor WAPL creates a pool of free cohesin, in a process known as cohesin turnover, which reloads it to cell-type-specific binding sites. Paradoxically, stabilization of cohesin binding, following WAPL ablation, results in depletion of cohesin from these cell-type-specific regions, loss of gene expression and differentiation. Chromosome conformation capture experiments show that cohesin turnover is important for maintaining promoter-enhancer loops. Binding of cohesin to cell-type-specific sites is dependent on the pioneer transcription factors OCT4 (POU5F1) and SOX2, but not NANOG. We show the importance of cohesin turnover in controlling transcription and propose that a cycle of cohesin loading and off-loading, instead of static cohesin binding, mediates promoter and enhancer interactions critical for gene regulation.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Proteins/metabolism , Animals , Binding Sites , Cell Differentiation/genetics , Cell Line , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/genetics , Mice , Models, Biological , Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Cohesins
11.
Nature ; 578(7795): 472-476, 2020 02.
Article in English | MEDLINE | ID: mdl-31905366

ABSTRACT

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 Å, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL2,3. Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.


Subject(s)
CCCTC-Binding Factor/chemistry , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Binding Sites , Carrier Proteins/metabolism , Chromatin/chemistry , Chromatin/metabolism , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , Humans , Ligands , Models, Molecular , Nuclear Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Stability , Protein Subunits/chemistry , Protein Subunits/metabolism , Proto-Oncogene Proteins/metabolism , Cohesins
12.
Mol Cell ; 76(5): 724-737.e5, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31629658

ABSTRACT

Condensin is a conserved SMC complex that uses its ATPase machinery to structure genomes, but how it does so is largely unknown. We show that condensin's ATPase has a dual role in chromosome condensation. Mutation of one ATPase site impairs condensation, while mutating the second site results in hyperactive condensin that compacts DNA faster than wild-type, both in vivo and in vitro. Whereas one site drives loop formation, the second site is involved in the formation of more stable higher-order Z loop structures. Using hyperactive condensin I, we reveal that condensin II is not intrinsically needed for the shortening of mitotic chromosomes. Condensin II rather is required for a straight chromosomal axis and enables faithful chromosome segregation by counteracting the formation of ultrafine DNA bridges. SMC complexes with distinct roles for each ATPase site likely reflect a universal principle that enables these molecular machines to intricately control chromosome architecture.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly/physiology , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/physiology , Adenosine Triphosphate/chemistry , Binding Sites/genetics , Binding Sites/physiology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/physiology , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Chromosomes/physiology , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Humans , Multiprotein Complexes/physiology , Protein Binding/physiology , Protein Subunits/metabolism , Cohesins
13.
Nucleic Acids Res ; 47(18): 9557-9572, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31372638

ABSTRACT

Estrogen receptor α (ERα) is an enhancer activating transcription factor, a key driver of breast cancer and a main target for cancer therapy. ERα-mediated gene regulation requires proper chromatin-conformation to facilitate interactions between ERα-bound enhancers and their target promoters. A major determinant of chromatin structure is the CCCTC-binding factor (CTCF), that dimerizes and together with cohesin stabilizes chromatin loops and forms the boundaries of topologically associated domains. However, whether CTCF-binding elements (CBEs) are essential for ERα-driven cell proliferation is unknown. To address this question in a global manner, we implemented a CRISPR-based functional genetic screen targeting CBEs located in the vicinity of ERα-bound enhancers. We identified four functional CBEs and demonstrated the role of one of them in inducing chromatin conformation changes in favor of activation of PREX1, a key ERα target gene in breast cancer. Indeed, high PREX1 expression is a bona-fide marker of ERα-dependency in cell lines, and is associated with good outcome after anti-hormonal treatment. Altogether, our data show that distinct CTCF-mediated chromatin structures are required for ERα- driven breast cancer cell proliferation.


Subject(s)
Breast Neoplasms/genetics , CCCTC-Binding Factor/genetics , Cell Proliferation/genetics , Estrogen Receptor alpha/genetics , Binding Sites/genetics , Breast Neoplasms/pathology , CRISPR-Cas Systems/genetics , Chromatin/genetics , Enhancer Elements, Genetic/genetics , Female , Humans , MCF-7 Cells , Protein Binding/genetics
14.
Nat Genet ; 51(7): 1160-1169, 2019 07.
Article in English | MEDLINE | ID: mdl-31253979

ABSTRACT

Most of the millions of SNPs in the human genome are non-coding, and many overlap with putative regulatory elements. Genome-wide association studies (GWAS) have linked many of these SNPs to human traits or to gene expression levels, but rarely with sufficient resolution to identify the causal SNPs. Functional screens based on reporter assays have previously been of insufficient throughput to test the vast space of SNPs for possible effects on regulatory element activity. Here we leveraged the throughput and resolution of the survey of regulatory elements (SuRE) reporter technology to survey the effect of 5.9 million SNPs, including 57% of the known common SNPs, on enhancer and promoter activity. We identified more than 30,000 SNPs that alter the activity of putative regulatory elements, partially in a cell-type-specific manner. Integration of this dataset with GWAS results may help to pinpoint SNPs that underlie human traits.


Subject(s)
Genetic Predisposition to Disease , Genome, Human , Polymorphism, Single Nucleotide , Regulatory Elements, Transcriptional , Transcription Factors/metabolism , Genome-Wide Association Study , Hep G2 Cells , High-Throughput Nucleotide Sequencing , Humans , K562 Cells , Phenotype , Quantitative Trait Loci , Transcription Factors/genetics
15.
Nat Commun ; 10(1): 1425, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926782

ABSTRACT

Cdkn2ab knockout mice, generated from 129P2 ES cells develop skin carcinomas. Here we show that the incidence of these carcinomas drops gradually in the course of backcrossing to the FVB/N background. Microsatellite analyses indicate that this cancer phenotype is linked to a 20 Mb region of 129P2 chromosome 15 harboring the Wnt7b gene, which is preferentially expressed from the 129P2 allele in skin carcinomas and derived cell lines. ChIPseq analysis shows enrichment of H3K27-Ac, a mark for active enhancers, in the 5' region of the Wnt7b 129P2 gene. The Wnt7b 129P2 allele appears sufficient to cause in vitro transformation of Cdkn2ab-deficient cell lines primarily through CDK6 activation. These results point to a critical role of the Cdkn2ab locus in keeping the oncogenic potential of physiological levels of WNT signaling in check and illustrate that GWAS-based searches for cancer predisposing allelic variants can be enhanced by including defined somatically acquired lesions as an additional input.


Subject(s)
Carcinogenesis/genetics , Cyclin-Dependent Kinase Inhibitor p15/deficiency , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Genetic Variation , Skin Neoplasms/genetics , Wnt Signaling Pathway/genetics , Alleles , Animals , Base Pairing/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromosomes, Mammalian/genetics , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Fibroblasts/metabolism , Genetic Linkage , Lung/pathology , Metaplasia , Mice, Knockout , Platelet-Derived Growth Factor/metabolism
16.
Nat Genet ; 50(8): 1151-1160, 2018 08.
Article in English | MEDLINE | ID: mdl-29988121

ABSTRACT

Chromatin folding contributes to the regulation of genomic processes such as gene activity. Existing conformation capture methods characterize genome topology through analysis of pairwise chromatin contacts in populations of cells but cannot discern whether individual interactions occur simultaneously or competitively. Here we present multi-contact 4C (MC-4C), which applies Nanopore sequencing to study multi-way DNA conformations of individual alleles. MC-4C distinguishes cooperative from random and competing interactions and identifies previously missed structures in subpopulations of cells. We show that individual elements of the ß-globin superenhancer can aggregate into an enhancer hub that can simultaneously accommodate two genes. Neighboring chromatin domain loops can form rosette-like structures through collision of their CTCF-bound anchors, as seen most prominently in cells lacking the cohesin-unloading factor WAPL. Here, massive collision of CTCF-anchored chromatin loops is believed to reflect 'cohesin traffic jams'. Single-allele topology studies thus help us understand the mechanisms underlying genome folding and functioning.


Subject(s)
Chromatin/genetics , Enhancer Elements, Genetic/genetics , Alleles , Animals , CCCTC-Binding Factor/genetics , Mice , Nucleic Acid Conformation , Regulatory Sequences, Nucleic Acid/genetics , beta-Globins/genetics
17.
Nucleic Acids Res ; 46(15): e91, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29800273

ABSTRACT

It is becoming increasingly clear that chromosome organization plays an important role in gene regulation. High-resolution methods such as 4C, Capture-C and promoter capture Hi-C (PCHiC) enable the study of chromatin loops such as those formed between promoters and enhancers or CTCF/cohesin binding sites. An important aspect of 4C/Capture-C/PCHiC analyses is the reliable identification of chromatin loops, preferably not based on visual inspection of a DNA contact profile, but on reproducible statistical analysis that robustly scores interaction peaks in the non-uniform contact background. Here, we present peakC, an R package for the analysis of 4C/Capture-C/PCHiC data. We generated 4C data for 13 viewpoints in two tissues in at least triplicate to test our methods. We developed a non-parametric peak caller based on rank-products. Sampling analysis shows that not read depth but template quality is the most important determinant of success in 4C experiments. By performing peak calling on single experiments we show that the peak calling results are similar to the replicate experiments, but that false positive rates are significantly reduced by performing replicates. Our software is user-friendly and enables robust peak calling for one-vs-all chromosome capture experiments. peakC is available at: https://github.com/deWitLab/peakC.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA/methods , Software , Animals , Binding Sites/genetics , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Liver/embryology , Liver/metabolism , Mice , Reproducibility of Results
18.
Nucleic Acids Res ; 46(8): 4213-4227, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29481642

ABSTRACT

Oncogene-induced senescence (OIS), provoked in response to oncogenic activation, is considered an important tumor suppressor mechanism. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without a protein-coding capacity. Functional studies showed that deregulated lncRNA expression promote tumorigenesis and metastasis and that lncRNAs may exhibit tumor-suppressive and oncogenic function. Here, we first identified lncRNAs that were differentially expressed between senescent and non-senescent human fibroblast cells. Using RNA interference, we performed a loss-function screen targeting the differentially expressed lncRNAs, and identified lncRNA-OIS1 (lncRNA#32, AC008063.3 or ENSG00000233397) as a lncRNA required for OIS. Knockdown of lncRNA-OIS1 triggered bypass of senescence, higher proliferation rate, lower abundance of the cell-cycle inhibitor CDKN1A and high expression of cell-cycle-associated genes. Subcellular inspection of lncRNA-OIS1 indicated nuclear and cytosolic localization in both normal culture conditions as well as following oncogene induction. Interestingly, silencing lncRNA-OIS1 diminished the senescent-associated induction of a nearby gene (Dipeptidyl Peptidase 4, DPP4) with established role in tumor suppression. Intriguingly, similar to lncRNA-OIS1, silencing DPP4 caused senescence bypass, and ectopic expression of DPP4 in lncRNA-OIS1 knockdown cells restored the senescent phenotype. Thus, our data indicate that lncRNA-OIS1 links oncogenic induction and senescence with the activation of the tumor suppressor DPP4.


Subject(s)
Cellular Senescence/genetics , Dipeptidyl Peptidase 4/genetics , RNA, Long Noncoding/metabolism , Dipeptidyl Peptidase 4/metabolism , Gene Expression , Genes, ras , Genome , HEK293 Cells , Humans , Neoplasms/genetics , Neoplasms/metabolism
19.
Cell ; 169(4): 693-707.e14, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28475897

ABSTRACT

The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.


Subject(s)
Carrier Proteins/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Acetyltransferases/metabolism , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins , Fatty Acid Elongases , Gene Editing , Humans , Multiprotein Complexes/metabolism , Repressor Proteins/metabolism , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...