Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Int J Endocrinol ; 2020: 4139093, 2020.
Article in English | MEDLINE | ID: mdl-32308678

ABSTRACT

ß-Endorphin, an endogenous opioid peptide, and its µ-opioid receptor are expressed in brain, liver, and peripheral tissues. ß-Endorphin induces endothelial dysfunction and is related to insulin resistance. We clarified the effects of ß-endorphin on atherosclerosis. We assessed the effects of ß-endorphin on the inflammatory response and monocyte adhesion in human umbilical vein endothelial cells (HUVECs), foam cell formation, and the inflammatory phenotype in THP-1 monocyte-derived macrophages, and migration and proliferation of human aortic smooth muscle cells (HASMCs) in vitro. We also assessed the effects of ß-endorphin on aortic lesions in Apoe -/- mice in vivo. The µ-opioid receptor (OPRM1) was expressed in THP-1 monocytes, macrophages, HASMCs, HUVECs, and human aortic endothelial cells. ß-Endorphin significantly increased THP-1 monocyte adhesion to HUVECs and induced upregulation of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin via nuclear factor-κB (NF-κB) and p38 phosphorylation in HUVECs. ß-Endorphin significantly increased HUVEC proliferation and enhanced oxidized low-density lipoprotein-induced foam cell formation in macrophages. ß-Endorphin also significantly shifted the macrophage phenotype to proinflammatory M1 rather than anti-inflammatory M2 via NF-κB phosphorylation during monocyte-macrophage differentiation and increased migration and apoptosis in association with c-jun-N-terminal kinase, p38, and NF-κB phosphorylation in HASMCs. Chronic ß-endorphin infusion into Apoe -/- mice significantly aggravated the development of aortic atherosclerotic lesions, with an increase in vascular inflammation and the intraplaque macrophage/smooth muscle cell ratio, an index of plaque instability. Our study provides the first evidence that ß-endorphin contributes to the acceleration of the progression and instability of atheromatous plaques. Thus, µ-opioid receptor antagonists may be useful for the prevention and treatment of atherosclerosis.

2.
Sci Rep ; 6: 39182, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27982131

ABSTRACT

CREB3L3 is involved in fatty acid oxidation and ketogenesis in a mutual manner with PPARα. To evaluate relative contribution, a combination of knockout and transgenic mice was investigated. On a ketogenic-diet (KD) that highlights capability of hepatic ketogenesis, Creb3l3-/- mice exhibited reduction of expression of genes for fatty oxidation and ketogenesis comparable to Ppara-/- mice. Most of the genes were further suppressed in double knockout mice indicating independent contribution of hepatic CREB3L3. During fasting, dependency of ketogenesis on CREB3L3 is lesser extents than Ppara-/- mice suggesting importance of adipose PPARα for supply of FFA and hyperlipidemia in Creb3l3-/- mice. In conclusion CREB3L3 plays a crucial role in hepatic adaptation to energy starvation via two pathways: direct related gene regulation and an auto-loop activation of PPARα. Furthermore, as KD-fed Creb3l3-/- mice exhibited severe fatty liver, activating inflammation, CREB3L3 could be a therapeutic target for NAFLD.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Fatty Acids/chemistry , PPAR alpha/genetics , Adenoviridae/genetics , Animals , Blood Glucose/analysis , Carnitine O-Palmitoyltransferase/chemistry , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/deficiency , Diet, Ketogenic , Energy Metabolism , Fatty Acids/metabolism , Fatty Liver/etiology , Fatty Liver/metabolism , Fibroblast Growth Factors/blood , Gene Expression , Lipid Peroxidation , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , PPAR alpha/deficiency , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic , RNA, Messenger/metabolism , Triglycerides/blood
3.
Endocrinology ; 155(12): 4706-19, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25233440

ABSTRACT

Transcriptional regulation of metabolic genes in the liver is the key to maintaining systemic energy homeostasis during starvation. The membrane-bound transcription factor cAMP-responsive element-binding protein 3-like 3 (CREB3L3) has been reported to be activated during fasting and to regulate triglyceride metabolism. Here, we show that CREB3L3 confers a wide spectrum of metabolic responses to starvation in vivo. Adenoviral and transgenic overexpression of nuclear CREB3L3 induced systemic lipolysis, hepatic ketogenesis, and insulin sensitivity with increased energy expenditure, leading to marked reduction in body weight, plasma lipid levels, and glucose levels. CREB3L3 overexpression activated gene expression levels and plasma levels of antidiabetic hormones, including fibroblast growth factor 21 and IGF-binding protein 2. Amelioration of diabetes by hepatic activation of CREB3L3 was also observed in several types of diabetic obese mice. Nuclear CREB3L3 mutually activates the peroxisome proliferator-activated receptor (PPAR) α promoter in an autoloop fashion and is crucial for the ligand transactivation of PPARα by interacting with its transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1α. CREB3L3 directly and indirectly controls fibroblast growth factor 21 expression and its plasma level, which contributes at least partially to the catabolic effects of CREB3L3 on systemic energy homeostasis in the entire body. Therefore, CREB3L3 is a therapeutic target for obesity and diabetes.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Diabetes Mellitus, Experimental/metabolism , Energy Metabolism , Fasting/metabolism , Liver/metabolism , Animals , Body Weight , Eating , Fibroblast Growth Factors/metabolism , Food Deprivation/physiology , Gene Expression , Homeostasis , Insulin Resistance , Male , Mice, Inbred C57BL , Mice, Transgenic , Obesity/etiology , Obesity/metabolism , PPAR alpha/metabolism , Starvation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL