Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Adv Pharmacol Pharm Sci ; 2024: 6655996, 2024.
Article in English | MEDLINE | ID: mdl-38298460

ABSTRACT

Obesity, characterized by excessive adipose tissue accumulation, has emerged as a crucial determinant for a wide range of chronic medical conditions. The identification of effective interventions for obesity is of utmost importance. Widely researched antiobesity agents focus on pancreatic lipase, a significant therapeutic target. This study presented the evaluation of ten flavonoid compounds in terms of their inhibitory activities against pancreatic lipase, utilizing both in vitro and in silico approaches. The results indicated that all tested compounds demonstrated modest and weaker inhibitory activities compared to the reference compound, orlistat. Among the compounds investigated, F01 exhibited the highest potency, with an IC50 value of 17.68 ± 1.43 µM. The enzymatic inhibition kinetic analysis revealed that F01 operated through a competitive inhibition mechanism with a determined Ki of 7.16 µM. This value suggested a moderate binding affinity for the pancreatic lipase enzyme. Furthermore, the associated Vmax value was quantified at 0.03272 ΔA·min-1. In silico studies revealed that F01 displayed a binding mode similar to that of orlistat, despite lacking an active functional group capable of forming a covalent bond with Ser152 of the catalytic triad. However, F01 formed a hydrogen bond with this crucial amino acid. Furthermore, F01 interacted with other significant residues at the enzyme's active site, particularly those within the lid domain. Based on these findings, F01 demonstrates substantial potential as a candidate for further investigations.

2.
J Biomol Struct Dyn ; : 1-13, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38088368

ABSTRACT

Lichens produce secondary metabolites that have many pharmaceutical activities such as antimicrobial, antioxidant, antiviral, anticancer, antigenotoxic, anti-inflammatory, analgesic and antipyretic activities. However, there is limited research on their efflux pump inhibitory activities. Twelve phytochemicals were isolated from Usnea aciculifera, and their activity of AcrAB-TolC efflux pump inhibition was evaluated. Four potential compounds, which are diffractaic acid (2), 8' -O- methylstictic acid (5), 3-hydroxy-4-(methoxycarbonyl)-2,5-dimethylphenyl 2,4-dimethoxy-3,6-dimethylbenzoate (8) and 3-hydroxy-4-(methoxycarbonyl)-2,5-dimethylphenyl 2-hydroxy-4-methoxy-3,6-dimethylbenzoate (9), were found by virtual screening using pharmacophore and 2D-QSAR model. Compound 8 exhibited AcrB inhibition activity in vitro with an accumulation H33342 percentage compared with untreated control of 202% at a concentration of 50 µM and increased the antibacterial activity of levofloxacin by four-fold at a concentration of 200 µM. By molecular docking and molecular dynamics (MD) simulation, the binding affinity of depside and depsidone derivatives to AcrB was also clarified. Despite the poor docking score to the AcrB binding site, compound 8 was the most stable among the four complexes at 20 ns of MD simulation. The analysis of long MD at 100 ns indicated that compound 8 interacts strongly with the residues in the distal pocket, creating a stable complex with ΔGbind of -31.51 kcal.mol-1. According to the ADMETlab 2.0 web server's predictions of pharmacokinetics and toxicities, compound 8 has the potential for drug development.Communicated by Ramaswamy H. Sarma.

3.
Mol Divers ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919619

ABSTRACT

Efflux pumps have been reported as one of the significant mechanisms by which bacteria evade the effects of multiple antibiotics. The tripartite efflux pump MexAB-OprM in Pseudomonas aeruginosa is one of the most significant multidrug efflux systems due to its broad resistance to antibiotics such as chloramphenicol, fluoroquinolones, lipophilic ß-lactam antibiotics, nalidixic acid, novobiocin, rifampicin, and tetracycline. A promising strategy to overcome this resistance mechanism is to combine antibiotics with efflux pump inhibitors (EPIs), which can increase their intracellular concentration to enhance their biological activities. Based on 143 EPIs with chemically diverse skeletons, the 3D pharmacophore and 2D-QSAR modelings were developed and used for the virtual screening on 9.2 million compounds including ZINC15, DrugBank, and Traditional Chinese Medicine databases to identify new EPIs. The molecular docking was also performed to evaluate the binding affinity of potential EPIs to the distal-binding pocket of MexB and resulted in 611 potential EPIs. The structure-activity relationship analyses suggested that nitrogen heterocyclic compounds, piperazine and pyridine scaffolds, and amide derivatives are the most favorable chemically features for MexAB inhibitory activities. The results from molecular dynamics analysis in 100 ns indicated that ZINC009296881 and ZINC009200074 were the most potential MexB inhibitors with strong binding affinity to the distal pocket and MM/GBSA ∆Gbind values of - 38.97 and - 30.19 kcal mol-1, respectively. The predicted pharmacokinetic properties and toxicity of these compounds indicated their potential oral drugs. Multistep virtual screening of EPIs for MexAB-OprM, efflux pump multidrug resistant of P. aeruginosa.

4.
ACS Omega ; 8(31): 28733-28748, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576624

ABSTRACT

Improving lipophilicity for drugs to penetrate the lipid membrane and decreasing bacterial and fungal coinfections for patients with cancer pose challenges in the drug development process. Here, a series of new N-alkylated-2-(substituted phenyl)-1H-benzimidazole derivatives were synthesized and characterized by 1H and 13C NMR, FTIR, and HRMS spectrum analyses to address these difficulties. All the compounds were evaluated for their antiproliferative, antibacterial, and antifungal activities. Results indicated that compound 2g exhibited the best antiproliferative activity against the MDA-MB-231 cell line and also displayed significant inhibition at minimal inhibitory concentration (MIC) values of 8, 4, and 4 µg mL-1 against Streptococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared with amikacin. The antifungal data of compounds 1b, 1c, 2e, and 2g revealed their moderate activities toward Candida albicans and Aspergillus niger, with MIC values of 64 µg mL-1 for both strains. Finally, the molecular docking study found that 2g interacted with crucial amino acids in the binding site of complex dihydrofolate reductase with nicotinamide adenine dinucleotide phosphate.

5.
Front Neurosci ; 17: 1116154, 2023.
Article in English | MEDLINE | ID: mdl-37332871

ABSTRACT

Introduction: This research is a pilot, single-blinded study investigating heart rate variability (HRV) during auricular acupressure at the left sympathetic point (AH7) in healthy volunteers. Methods: There were 120 healthy volunteers with hemodynamic indexes (heart rate, blood pressure) within normal ranges, randomly divided into two groups AG and SG (in each group having a gender ratio 1:1, aged 20-29), to receive either auricular acupressure using ear seed (AG) or sham method using adhesive patches without seed (SG) at the left sympathetic point while lying in a supine position. Acupressure intervention lasted 25 min, and HRV was recorded by a photoplethysmography device-namely, Kyto HRM-2511B and Elite appliance. Results: Auricular acupressure at the left Sympathetic point (AG) led to a significant reduction in heart rate (HR) (p < 0.05) and a considerable increase in HRV parameters demonstrated by HF (High-frequency power) (p < 0.05), compared to sham auricular acupressure (SG). However, no significant changes in LF (Low-frequency power) and RR (Respiratory rate) (p > 0.05) were observed in both groups during the process. Conclusion: These findings suggest that auricular acupressure at the left sympathetic point may activate the parasympathetic nervous system while a healthy person is lying relaxed.

6.
Mol Divers ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37369956

ABSTRACT

Diabetes mellitus is one of the top ten causes of death worldwide, accounting for 6.7 million deaths in 2021, and is one of the most rapidly growing global health emergencies of this century. Although several classes of therapeutic drugs have been invented and applied in clinical practice, diabetes continues to pose a serious and growing threat to public health and places a tremendous burden on those affected and their families. The strategy of reducing carbohydrate digestibility by inhibiting the activities of α-glucosidase and α-amylase is regarded as a promising preventative treatment for type 2 diabetes. In this study, we investigated the dual inhibitory effect against two polysaccharide hydrolytic enzymes of flavonoid derivatives from an in-house chemical database. By combining molecular docking and structure-activity relationship analysis, twelve compounds with docking energies less than or equal to - 8.0 kcal mol-1 and containing required structural features for dual inhibition of the two enzymes were identified and subjected to chemical synthesis and in vitro evaluation. The obtained results showed that five compounds exhibited dual inhibitory effects on the target enzymes with better IC50 values than the approved positive control acarbose. Molecular dynamics simulations were performed to elucidate the binding of these flavonoids to the enzymes. The predicted pharmacokinetic and toxicological properties suggest that these compounds are viable for further development as type 2 diabetes drugs.

7.
J Biomol Struct Dyn ; 41(23): 14003-14015, 2023.
Article in English | MEDLINE | ID: mdl-36995131

ABSTRACT

The IL-6/IL-6R or IL-6/GP130 protein-protein interactions play a significant role in controlling the development of chronic inflammatory diseases, such as rheumatoid arthritis, Castleman disease, psoriasis, and, most recently, COVID-19. Modulating or antagonizing protein-protein interactions of IL6 binding to its receptors by oral drugs promises similar efficacy to biological therapy in patients, namely monoclonal antibodies. In this study, we used a crystal structure of the Fab part of olokizumab in a complex with IL-6 (PDB ID: 4CNI) to uncover starting points for small molecule IL-6 antagonist discovery. Firstly, a structure­based pharmacophore model of the protein active site cavity was generated to identify possible candidates, followed by virtual screening with a significant database Drugbank. After the docking protocol validation, a virtual screening by molecular docking was carried out and a total of 11 top hits were reported. Detailed analysis of the best scoring molecules was performed with ADME/T analysis and molecular dynamics simulation. Furthermore, the Molecular Mechanics-Generalized Born Surface Area (MM/GBSA) technique has been utilized to evaluate the free binding energy. Based on the finding, one newly obtained compound in this study, namely DB15187, may serve as a lead compound for the discovery of IL-6 inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Interleukin-6 Inhibitors , Interleukin-6 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Ligands
8.
J Biomol Struct Dyn ; 41(22): 12503-12520, 2023.
Article in English | MEDLINE | ID: mdl-36762699

ABSTRACT

AcrAB-TolC tripartite efflux pump, which belongs to the RND superfamily, is a main multi-drug efflux system of Escherichia coli (E. coli) because of the broad resistance on various antibiotics. With the discovering of efflux pump inhibitors (EPIs), a combination between these and antibiotics is one of the most promising therapies. Therefore, building a virtual screening model with prediction capacities for the efflux pump inhibitory activities of candidates from DrugBank and ZINC15 dataset, is one of the key goals of this project. Based on the database of 170 diverse chemical structures collected from 28 research journals, two 2D-QSAR models and a 3D-pharmacophore model have been performed. On the AcrB protein (PDB 4DX7), two binding sites have been discovered that match to the hydrophobic trap in the distal pocket and the switch loop in the proximal pocket. After virtual screening processes, twenty candidate AcrAB-TolC inhibitors have been subjected to molecular dynamics simulations, binding free energy calculations and ADMET predictions. The results indicate that three compounds namely DB09233, DB02581, and DB15224 are potential inhibitors with ΔGbind of -42.30 ± 4.58, -40.76 ± 7.30 and -31.06 ± 7.63 kcal.mol-1, respectively.Communicated by Ramaswamy H. Sarma.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Molecular Dynamics Simulation , Escherichia coli Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Multidrug Resistance-Associated Proteins , Carrier Proteins/metabolism
9.
J Biomol Struct Dyn ; 41(22): 13154-13167, 2023.
Article in English | MEDLINE | ID: mdl-36709441

ABSTRACT

The role of interleukin-8 (IL-8) and its receptor CXCR2 in inflammatory responses and tumor development and progression has been well documented. Our study aims to discover novel compounds as CXCR2 antagonists to block the IL-8 signaling pathway using an in silico drug design. Herein, a structure-based pharmacophore model was developed based on the crystal structure of inactive CXCR2 in a complex with an allosteric inhibitor. This model was validated and refined, followed by virtual screening with the ZINC15 database. Subsequent molecular docking allows for predicting the best pose of a ligand inside a receptor binding site. We found that the 35 top-ranked hits exhibited docking scores from -30.81 to -25.28 kJ/mol and better interaction potential comparing the reference inhibitor. Analysis of ADME and toxicity properties revealed the efficacy and safety of the selected seven compounds. To validate the stability of the protein-ligand complex structure MD simulations approach has also been performed and confirmed via the critical parameters. The MD results explained that the CXCR2 receptor bound with two best-proposed molecules, including ZINC77105530 and ZINC93176465, was quite stable states as observed from low RMSD, RMSF, Rg, SASA values, and high occupancy of the interaction types. Finally, our data identified that these compounds play as potential inhibitors of IL-8 signaling pathways with the MM/GBSA binding free energies of -41.77 ± 6.45 kcal/mol and -38.84 ± 6.16 kcal/mol, respectively.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Receptors, Interleukin-8B , Molecular Docking Simulation , Interleukin-8 , Ligands , Signal Transduction
10.
Mol Divers ; 27(5): 2315-2330, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36319930

ABSTRACT

IL(interleukin)-6 is a multifunctional cytokine crucial for immunological, hematopoiesis, inflammation, and bone metabolism. Strikingly, IL-6 has been shown to significantly contribute to the initiation of cytokine storm-an acute systemic inflammatory syndrome in Covid-19 patients. Recent study has showed that blocking the IL-6 signaling pathway with an anti-IL-6 receptor monoclonal antibody (mAb) can reduce the severity of COVID-19 symptoms and enhance patient survival. However, the mAb has several drawbacks, such as high cost, potential immunogenicity, and invasive administration due to the large-molecule protein product. Instead, these issues could be mitigated using small molecule IL-6 inhibitors, but none are currently available. This study aimed to discover IL-6 inhibitors based on the PPI with a novel camelid Fab fragment, namely 68F2, in a crystal protein complex structure (PDB ID: 4ZS7). The pharmacophore models and molecular docking were used to screen compounds from DrugBank databases. The oral bioavailability of the top 24 ligands from the screening was predicted by the SwissAMDE tool. Subsequently, the selected molecules from docking and MD simulation illustrated a promising binding affinity in the formation of stable complexes at the active binding pocket of IL-6. Binding energies using the MM-PBSA technique were applied to the top 4 hit compounds. The result indicated that DB08402 and DB12903 could form strong interactions and build stable protein-ligand complexes with IL-6. These potential compounds may serve as a basis for further developing small molecule IL-6 inhibitors in the future.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Interleukin-6 , Ligands
11.
Article in English | MEDLINE | ID: mdl-36561603

ABSTRACT

Objective: This pilot study was conducted to investigate changes in the pulse rate and blood pressure in healthy volunteers after applying auricular acupressure at the "heart acupoint." Methods: A total of 120 healthy volunteers with hemodynamic indexes within normal limits were randomly allocated into 4 groups to receive auricular acupressure treatment either at the heart acupoint of the left or the right, or in both ears, and one control group without applying auricular acupressure. Results: Before the application of auricular acupressure, there were no statistical differences in pulse rate and blood pressure increments among the four groups during the first cold pressor test. In groups in which auricular pressure was applied, the pulse rate was significantly reduced after the application of auricular acupressure in three groups; however, no statistically significant difference was detected among the groups. Changes in blood pressure were not statistically significant in or among the different groups after applying auricular acupressure. The average recorded pulse rate values during the second cold pressor test (after auricular acupressure) were significantly lower compared to the corresponding values taken during the first cold pressor test (before auricular acupressure) (p < 0.05); however, pulse rate increments during the two cold pressor tests (with and without auricular acupressure) were similar (p > 0.05). Conclusions: These findings suggest that auricular acupressure could be used as an adjunctive nonpharmacological method for reducing the pulse rate.

12.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555726

ABSTRACT

Antibiotic resistance has been becoming more and more critical due to bacteria's evolving hydrolysis enzymes. The NDM-1 enzyme could hydrolyze not only carbapenems but also most of ß-lactam's antibiotics and inhibitors. In fact, variant strains could impose a high impact on the resistance of bacteria producing NDM-1. Although previous studies showed the effect of some variants toward antibiotics and inhibitors binding, there has been no research systematically evaluating the effects of alternative one-point mutations on the hydrolysis capacity of NDM-1. This study aims to identify which mutants could increase or decrease the effectiveness of antibiotics and ß-lactamase inhibitors toward bacteria. Firstly, 35 different variants with a high probability of emergence based on the PAM-1 matrix were constructed and then docked with 5 ligands, namely d-captopril, l-captopril, thiorphan, imipenem, and meropenem. The selected complexes underwent molecular dynamics simulation and free energy binding estimation, with the results showing that the substitutions at residues 122 and 124 most influenced the binding ability of NDM-1 toward inhibitors and antibiotics. The H122R mutant decreases the binding ability between d-captopril and NDM-1 and diminishes the effectiveness of this antibiotic toward Enterobacteriaceae. However, the H122R mutant has a contrary impact on thiorphan, which should be tested in vitro and in vivo in further experiments.


Subject(s)
Carbapenems , beta-Lactamase Inhibitors , Carbapenems/pharmacology , Carbapenems/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Point Mutation , Captopril , Thiorphan , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , beta-Lactamases/metabolism , Bacteria/metabolism , Microbial Sensitivity Tests
13.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232872

ABSTRACT

The World Health Organization declared monkeypox a global public health emergency on 23 July 2022. This disease was caused by the monkeypox virus (MPXV), which was first identified in 1958 in Denmark. The MPXV is a member of the Poxviridae family, the Chordopoxvirinae subfamily, and the genus Orthopoxvirus, which share high similarities with the vaccinia virus (the virus used to produce the smallpox vaccine). For the initial stage of infection, the MPXV needs to attach to the human cell surface glycosaminoglycan (GAG) adhesion molecules using its E8 protein. However, up until now, neither a structure for the MPXV E8 protein nor a specific cure for the MPXV exists. This study aimed to search for small molecules that inhibit the MPXV E8 protein, using computational approaches. In this study, a high-quality three-dimensional structure of the MPXV E8 protein was retrieved by homology modeling using the AlphaFold deep learning server. Subsequent molecular docking and molecular dynamics simulations (MDs) for a cumulative duration of 2.1 microseconds revealed that ZINC003977803 (Diosmin) and ZINC008215434 (Flavin adenine dinucleotide-FAD) could be potential inhibitors against the E8 protein with the MM/GBSA binding free energies of -38.19 ± 9.69 and -35.59 ± 7.65 kcal·mol-1, respectively.


Subject(s)
Diosmin , Mpox (monkeypox) , Smallpox Vaccine , Flavin-Adenine Dinucleotide , Glycosaminoglycans , Humans , Molecular Docking Simulation , Mpox (monkeypox)/prevention & control , Monkeypox virus , Viral Proteins
14.
Struct Chem ; 33(5): 1707-1725, 2022.
Article in English | MEDLINE | ID: mdl-35811783

ABSTRACT

The main protease 3CLpro is one of the potential targets against coronavirus. Inhibiting this enzyme leads to the interruption of viral replication. Chalcone and its derivatives were reported to possess the ability to bind to 3CLpro protease in the binding pocket. This study explored an in-house database of 269 chalcones as 3CLpro inhibitors using in silico screening models, including molecular docking, molecular dynamics simulation, binding free energy calculation, and ADME prediction. C264 and C235 stand out as the two most potential structures. The top hit compound C264 was with the Jamda score of -2.8329 and the MM/GBSA binding energy mean value of -28.23 ± 3.53 kcal/mol, which was lower than the reference ligand. Despite the lower mean binding energy (-22.07 ± 3.39 kcal/mol), in-depth analysis of binding interaction suggested C235 could be another potential candidate. Further, in vitro and in vivo experiments are required to confirm the inhibitory ability. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02000-3.

15.
Article in English | MEDLINE | ID: mdl-35509626

ABSTRACT

Heart rate variability (HRV) is the variation in time between each heartbeat. Increasing HRV may contribute to improving autonomic nervous system dysfunctions. Acupuncture stimulation through the vagus plexus in the ear is considered as a method that can improve HRV. In this pilot study, we examined 114 healthy volunteers at the Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, from January to May 2020. During a 20-minute interval, participants were stimulated two times at the acupoint in the left ear with Semen seed. The heart rate and HRV values were monitored before, during, and after acupressure every 5 minutes. When we compared the experimental group with the control group, HRV significantly increased in the stage of ear-stimulated acupressure compared with the stage before and after the auricular acupressure (p=0.01, p=0.04, p=0.04 and p=0.02) and the difference was not statistically significant compared with the phase of nonstimulated (p=0.15, p=0.28). The changes in other values including SDNN (standard deviation of the average NN), RMSSD (root mean square of successive RR interval differences), LF (low-frequency power), and HF (high-frequency power) in all stages were not statistically significant (p=>0.05) between groups. Based on the results, we can determine the increase in HRV when conducting auricular acupressure with stimulation at the heart acupoint on the left ear. This leads to a direction in further studies for clinical application for patients with autonomic nervous disorder.

16.
Biomed Res Int ; 2022: 9982453, 2022.
Article in English | MEDLINE | ID: mdl-35378788

ABSTRACT

The human P-glycoprotein (P-gp) and the NorA transporter are the major culprits of multidrug resistance observed in various bacterial strains and cancer cell lines, by extruding drug molecules out of the targeted cells, leading to treatment failures in clinical settings. Inhibiting the activity of these efflux pumps has been a well-known strategy of drug design studies in this regard. In this manuscript, our earlier published machine learning models and homology structures of P-gp and NorA were utilized to screen a chemolibrary of 95 in-house chalcone derivatives, identifying two hit compounds, namely, F88 and F90, as potential modulators of both transporters, whose activity on Staphylococcus aureus strains overexpressing NorA and resistant to ciprofloxacin was subsequently confirmed. The findings of this study are expected to guide future research towards developing novel potent chalconic inhibitors of P-gp and/or NorA.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Chalcone , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Chalcone/pharmacology , Ciprofloxacin/pharmacology , Humans , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins
17.
PLoS One ; 17(4): e0266632, 2022.
Article in English | MEDLINE | ID: mdl-35385549

ABSTRACT

Interleukin 6 (IL-6) is a cytokine with various biological functions in immune regulation, hematopoiesis, and inflammation. Elevated IL-6 levels have been identified in several severe disorders such as sepsis, acute respiratory distress syndrome (ARDS), and most recently, COVID-19. The biological activity of IL-6 relies on interactions with its specific receptor, IL-6Rα, including the membrane-bound IL-6 receptor (mIL-6R) and the soluble IL-6 receptor (sIL-6R). Thus, inhibition of the interaction between these two proteins would be a potential treatment for IL-6 related diseases. To date, no orally available small-molecule drug has been approved. This study focuses on finding potential small molecules that can inhibit protein-protein interactions between IL-6 and its receptor IL-6Rα using its crystal structure (PDB ID: 5FUC). First, two pharmacophore models were constructed based on the interactions between key residues of IL-6 (Phe74, Phe78, Leu178, Arg179, Arg182) and IL-6Rα (Phe229, Tyr230, Glu277, Glu278, Phe279). A database of approximately 22 million compounds was screened using 3D-pharmacophore models, molecular docking models, and ADMET properties. By analyzing the interactive capability of successfully docked compounds with important amino acids, 12 potential ligands were selected for further analysis via molecular dynamics simulations. Based on the stability of the complexes, the high interactions rate of each ligand with the key residues of IL-6/IL-6Rα, and the low binding free energy calculation, two compounds ZINC83804241 and ZINC02997430, were identified as the most potential IL-6 inhibitor candidates. These results will pave the way for the design and optimization of more specific compounds to combat cytokine storm in severe coronavirus patients.


Subject(s)
Interleukin-6 , Molecular Dynamics Simulation , Humans , Interleukin-6/antagonists & inhibitors , Ligands , Molecular Docking Simulation , Receptors, Interleukin-6/metabolism
18.
PLoS One ; 17(2): e0264385, 2022.
Article in English | MEDLINE | ID: mdl-35202450

ABSTRACT

Interactions between interleukin (IL)-8 and its receptors, CXCR1, and CXCR2, serve crucial roles in inflammatory conditions and various types of cancers. Inhibition of this signaling pathway has been exploited as a promising strategy in treating these diseases. However, most studies only focused on the design of allosteric antagonists-bound receptors on the intracellular side of IL-8 receptors. Recently, the first cryo-EM structures of IL-8-CXCR2-Gi complexes have been solved, revealing the unique binding and activation modes of the endogenous chemokine IL-8. Hence, we set to identify small molecule inhibitors for IL-8 using critical protein-protein interaction between IL-8 and CXCR2 at the orthosteric binding site. The pharmacophore models and molecular docking screened compounds from DrugBank and NCI databases. The oral bioavailability of the top 23 ligands from the screening was then predicted by the SwissAMDE tool. Molecular dynamics simulation and free binding energy calculation were performed for the best compounds. The result indicated that DB14770, DB12121, and DB03916 could form strong interactions and stable protein-ligand complexes with IL-8. These three candidates are potential IL-8 inhibitors that can be further evaluated by in vitro experiments in the next stage.


Subject(s)
Chemokines/metabolism , Interleukin-8/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Catalytic Domain/drug effects , Computational Biology , Computer Simulation , Humans , Models, Molecular , Molecular Docking Simulation
19.
Mol Divers ; 26(5): 2659-2678, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35031934

ABSTRACT

The interleukin-1 receptor like ST2 has emerged as a potential drug discovery target since it was identified as the receptor of the novel cytokine IL-33, which is involved in many inflammatory and autoimmune diseases. For the treatment of such IL-33-related disorders, efforts have been made to discover molecules that can inhibit the protein-protein interactions (PPIs) between IL-33 and ST2, but to date no drug has been approved. Although several anti-ST2 antibodies have entered clinical trials, the exploration of small molecular inhibitors is highly sought-after because of its advantages in terms of oral bioavailability and manufacturing cost. The aim of this study was to discover ST2 receptor inhibitors based on its PPIs with IL-33 in crystal structure (PDB ID: 4KC3) using virtual screening tools with pharmacophore modeling and molecular docking. From an enormous chemical space ZINC, a potential series of compounds has been discovered with stronger binding affinities than the control compound from a previous study. Among them, four compounds strongly interacted with the key residues of the receptor and had a binding free energy < - 20 kcal/mol. By intensive calculations using data from molecular dynamics simulations, ZINC59514725 was identified as the most potential candidate for ST2 receptor inhibitor in this study.


Subject(s)
Interleukin-33 , Molecular Dynamics Simulation , Ligands , Molecular Docking Simulation , Protein Binding , Receptors, Interleukin-1 , Zinc
20.
Molecules ; 26(11)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071039

ABSTRACT

ABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results. The aim of this study was to search for small molecules that could inhibit the ABCG2 pump. We first used the WISS MODEL automatic server to build up ABCG2 homology protein from 655 amino acids. Pharmacophore models, which were con-structed based on strong ABCG2 inhibitors (IC50 < 1 µM), consist of two hydrophobic (Hyd) groups, two hydrogen bonding acceptors (Acc2), and an aromatic or conjugated ring (Aro|PiR). Using molecular docking method, 714 substances from the DrugBank and 837 substances from the TCM with potential to inhibit the ABCG2 were obtained. These chemicals maybe favor synthesized or extracted and bioactivity testing.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry , ATP-Binding Cassette Transporters/antagonists & inhibitors , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Drug Resistance, Multiple/physiology , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Protein Binding/drug effects , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...