Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
Food Chem ; 451: 139521, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38703735

ABSTRACT

This study explored the use of ionic liquid-ultrasound (ILU)-assisted extraction to enhance the extraction rate of Platycodon grandiflorum saponins (PGSs), and the content, extraction mechanism, antioxidant activity, whitening, and antiaging activity of PGSs prepared using ILU, ultrasound-water, thermal reflux-ethanol, and cellulase hydrolysis were compared. The ILU method particularly disrupted the cell wall, improved PGS extraction efficiency, and yielded a high total saponin content of 1.45 ± 0.02 mg/g. Five monomeric saponins were identified, with platycodin D being the most abundant at 1.357 mg/g. PGSs displayed excellent in vitro antioxidant activity and exhibited inhibitory effects on tyrosinase, elastase, and hyaluronidase. The results suggest that PGSs may have broad antioxidant, skin-whitening, and antiaging potential to a large extent. Overall, this study provided valuable insights into the extraction, identification, and bioactivities of PGSs, which could serve as a reference for future development and application of these compounds in the functional foods industry.

2.
Food Chem ; 451: 139441, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38678656

ABSTRACT

The utilization of agroindustrial wastes to enrich food protein resources and the exploration of their broader applications are crucial for addressing the food crisis and achieving sustainable development goals. In this study, reeling wastewater-derived sericin was hydrolyzed using papain and trypsin to prepare sericin peptide (SRP) and was used as an antihardening ingredient of high-protein nutrition bars (HPNBs). The mechanism of the antihardening effect of SRP was elucidated by investigating the content of advanced glycation end products and protein oxidation products (carbonyl and free sulfhydryl), and the molecular weight change of HPNBs during storage before and after the addition of SRP. Our results confirmed the fortification of HPNBs with SRP, which is beneficial for the promotion and expansion of sericin applications in the food industry, with positive implications for the rational utilization of protein resources and the enrichment of food protein sources.

3.
Food Res Int ; 184: 114270, 2024 May.
Article in English | MEDLINE | ID: mdl-38609246

ABSTRACT

This work set out to investigate how the physicochemical markers, volatiles, and metabolomic characteristics of mixed fermented the fermentation of Lycium barbarum and Polygonatum cyrtonema compound wine (LPCW) from S. cerevisine RW and D. hansenii AS2.45 changed over the course of fermentation. HS-SPME-GC-MS combined with non-targeted metabolomics was used to follow up and monitor the fermentation process of LPCW. In total, 43 volatile chemical substances, mostly alcohols, esters, acids, carbonyl compounds, etc., were discovered in LPCW. After 30 days of fermentation, phenylethyl alcohol had increased to 3045.83 g/mL, giving off a rose-like fresh scent. The biosynthesis of valine, leucine, and isoleucine as well as the metabolism of alanine, aspartic acid, and glutamic acid were the major routes that led to the identification of 1385 non-volatile components in total. This study offers a theoretical foundation for industrial development and advances our knowledge of the fundamental mechanism underlying flavor generation during LPCW fermentation.


Subject(s)
Lycium , Polygonatum , Wine , Fermentation , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction
4.
Food Funct ; 15(8): 4109-4121, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38597225

ABSTRACT

While there have been advancements in understanding the direct and indirect impact of riboflavin (B2) on intestinal inflammation, the precise mechanisms are still unknown. This study focuses on evaluating the effects of riboflavin (B2) supplementation on a colitis mouse model induced with 3% dextran sodium sulphate (DSS). We administered three different doses of oral B2 (VB2L, VB2M, and VB2H) and assessed its impact on various physiological and biochemical parameters associated with colitis. Mice given any of the three doses exhibited relative improvement in the symptoms and intestinal damage. This was evidenced by the inhibition of the pro-inflammatory cytokines TNF-α, IL-1ß, and CALP, along with an increase in the anti-inflammatory cytokine IL-10. B2 supplementation also led to a restoration of oxidative homeostasis, as indicated by a decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels and an increase in reduced glutathione (GSH) and catalase (CAT) activities. B2 intervention showed positive effects on intestinal barrier function, confirmed by increased expression of tight junction proteins (occludin and ZO-1). B2 was linked to an elevated relative abundance of Actinobacteriota, Desulfobacterota, and Verrucomicrobiota. Notably, Verrucomicrobiota showed a significant increase in the VB2H group, reaching 15.03% relative abundance. Akkermansia exhibited a negative correlation with colitis and might be linked to anti-inflammatory function. Additionally, a remarkable increase in n-butyric acid, i-butyric acid, and i-valeric acid was reported in the VB2H group. The ameliorating role of B2 in gut inflammation can be attributed to immune system modulation as well as alterations in the gut microbiota composition, along with elevated levels of fecal SCFAs.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Homeostasis , Mice, Inbred C57BL , Riboflavin , Animals , Gastrointestinal Microbiome/drug effects , Mice , Colitis/drug therapy , Colitis/chemically induced , Dextran Sulfate/adverse effects , Riboflavin/pharmacology , Homeostasis/drug effects , Male , Disease Models, Animal , Cytokines/metabolism , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
5.
Foods ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540947

ABSTRACT

Carbon dots (CDs) have been proposed as photosensitizers in photodynamic treatment (PDT), owing to their excellent biological attributes and budding fruit preservation applications. In the present study, CDs (4.66 nm) were synthesized for photodynamic treatment to improve the quality attributes in post-harvest goji berries. The prepared CDs extended the storage time of the post-harvest goji berries by 9 d. The CD-mediated PDT postponed the hardness and decay index loss, reduced the formation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2•-) significantly, and delayed the loss of vital nutrients like the total protein, phenols, and flavonoids. The CD-mediated PDT improved the catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), phenylalanine ammonia-lyase (PAL), glutathione reductase (GR), and superoxide dismutase (SOD) activities, but did not improve polyphenol oxidase (PPO) activity. In addition, The CD-mediated PDT induced the accumulation of ascorbic acid (ASA) and glutathione (GSH). Overall, a CD-mediated PDT could extend the storage time and augment the quality attributes in post-harvest fresh goji berries by regulating the antioxidant system.

6.
Semin Neurol ; 44(2): 159-167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485122

ABSTRACT

The burden of noncommunicable neurological disorders, such as stroke, dementia, and headache disorders, are on the rise in low- to middle-income countries (LMICs), while neuroinfectious diseases remain a major concern. The development of neuroscience research aimed at defining the burden of neurological diseases across the lifespan, as well as optimizing diagnosis and treatment strategies, is fundamental to improving neurological health in resource-limited settings. One of the key factors to advancing neuroscience research in LMICs is the establishment of effective collaborations based on responsible and trustworthy partnerships between local scientists in LMICs and international collaborators. LMIC researchers face many logistical, institutional, and individual level challenges as they embark on their neuroscience research journey. Despite these challenges, there are opportunities for improving LMIC investigator-led research that should focus on human and institutional infrastructure development. With regard to human capacity building, potential areas for offering support include enhancing research methodology training, offering instruction in manuscript and grant-writing, institutionalizing mentorship programs, and providing opportunities to conduct funded, mentored research to disseminate in high-impact journals. The foundational elements required for implementing and optimizing neuroscience research within an institution include an institutional review board, mentorship programs, data management, research administration, and laboratory facilities. This institutional capacity varies significantly across and within countries, and many rely on collaborations with better-resourced institutions to initiate research. Successful equitable collaborations ensure the engagement of all local and international stakeholders, as well as implementation of a self-sustaining long-term program. Building research capacity in LMICs is an essential endeavor that requires ongoing commitment to training independent scientists. As research capacity increases, LMIC institutions and governments should consider developing competitive research grant programs to support innovative studies led by local researchers, foster regional collaborations, and hence create a sustainable and independent neuroscience research environment.


Subject(s)
Developing Countries , Resource-Limited Settings , Humans , Capacity Building
7.
Food Chem X ; 22: 101271, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38495455

ABSTRACT

Recent studies have witnessed that chemical modification can improve the physicochemical and functional properties of plants' polysaccharides. Herein, we modified the natural Lycium barbarum seed dreg polysaccharides (LBSDPs) by sulfation (S-LBSDPs), phosphorylation (P-LBSDPs), and carboxymethylation (C-LBSDPs), and evaluated the chemical composition and antioxidant activity of their derivatives. Natural polysaccharides and their derivatives exhibited typical polysaccharide absorption peaks and characteristic group absorption peaks in FT-IR spectra along with maximum UV absorption. After modification, the total sugar and protein contents of the derivatives were decreased, whereas the uronic acid content was increased. Among the three derivatives, sulfated polysaccharides displayed excellent thermal stability. S-LBSDP and P-LBSDP showed the highest ABTS radical scavenging and reducing power while S-LBSDPs and C-LBSDPs showed better DPPH radical scavenging effect, and P-LBSDPs showed considerable Fe2+ chelating ability. Our data indicate that chemical modifications can impart a positive effect on the antioxidant potential of plant-derived polysaccharides.

8.
Food Chem X ; 22: 101270, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38495459

ABSTRACT

Lycium barbarum seed dregs (LBSDs) were used for carboxymethyl modification, resulting in three degree of substitution samples (DS). Based on the substitution degree, samples were designated as low degree of substitution insoluble dietary fiber (L-IDF), medium degree of substitution insoluble dietary fiber (M-IDF) and high degree of substitution insoluble dietary fiber (H-IDF). Physicochemical and functional properties of IDFs were examined in relation to carboxymethylation degree. Infrared Fourier transform spectroscopy (FT-IR) confirmed the carboxymethyl group. According to the results, IDF, L-IDF, M-IDF, and H-IDF acquired higher enthalpy changes, and their thermal stability improved significantly. A higher DS resulted in an increase in hydration properties such as water retention capacity and water swelling capacity, as well as functional properties such as glucose adsorption capacity, nitrite ion adsorption capacity, and cholesterol adsorption capacity. As a result, carboxymethylation could effectively enhance the biological properties of L. barbarum seed dreg insoluble dietary fiber (LBSDIDF).

9.
Curr Opin Crit Care ; 30(2): 142-150, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38441114

ABSTRACT

PURPOSE OF REVIEW: The present review summarizes the diagnostic approach to autoimmune encephalitis (AE) in the intensive care unit (ICU) and provides practical guidance on therapeutic management. RECENT FINDINGS: Autoimmune encephalitis represents a group of immune-mediated brain diseases associated with antibodies that are pathogenic against central nervous system proteins. Recent findings suggests that the diagnosis of AE requires a multidisciplinary approach including appropriate recognition of common clinical syndromes, brain imaging and electroencephalography to confirm focal pathology, and cerebrospinal fluid and serum tests to rule out common brain infections, and to detect autoantibodies. ICU admission may be necessary at AE onset because of altered mental status, refractory seizures, and/or dysautonomia. Early management in ICU includes prompt initiation of immunotherapy, detection and treatment of seizures, and supportive care with neuromonitoring. In parallel, screening for neoplasm should be systematically performed. Despite severe presentation, epidemiological studies suggest that functional recovery is likely under appropriate therapy, even after prolonged ICU stays. CONCLUSION: AE and related disorders are increasingly recognized in the ICU population. Critical care physicians should be aware of these conditions and consider them early in the differential diagnosis of patients presenting with unexplained encephalopathy. A multidisciplinary approach is mandatory for diagnosis, ICU management, specific therapy, and prognostication.


Subject(s)
Autoimmune Diseases of the Nervous System , Encephalitis , Hashimoto Disease , Humans , Encephalitis/diagnosis , Encephalitis/therapy , Seizures , Intensive Care Units , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/therapy
10.
Lancet Neurol ; 23(4): 327-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493796
11.
Int J Lab Hematol ; 46(2): 234-242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38323691

ABSTRACT

This systematic review evaluates the evidence for accuracy of automated analyzers that estimate cerebrospinal fluid (CSF) white blood cell counts (WBC) compared to manual microscopy. Inclusion criteria of original research articles included human subjects, English language, and manual microscopy comparator. PUBMED, EMBASE and Cochrane Review databases were searched through 2019 and QUADAS-2 Tool was used for assessment of bias. Data were pooled and analyzed by comparison method, using random effects estimation. Among 652 titles, 554 abstracts screened, 104 full-text review, 111 comparisons from 41 studies were included. Pooled estimates of sensitivity and specificity (n = 7) were 95% (95%-CI 93%-97%) and 84% (95%-CI: 64%-96%), respectively. Pooled R2 estimates (n = 29) were 0.95 (95%-CI: 0.95-0.96); Pooled spearman rho correlation (n = 27) estimates were 0.95 (95% CI 0.95-0.96). Among those comparisons using Bland-Altman analysis (n = 11) pooled mean difference was estimated at 0.98 (95% CI-0.54-2.5). Among comparisons using Passing-Bablok regressions (n = 14) the pooled slope was estimated to be 1.05 (95% CI 1.03-1.07). Q tests of homogeneity were all significant with the exception of the Bland-Altman comparisons (I2 10%, p value 0.35). There is good overall accuracy for CSF WBC by automated hematologic analyzers. These findings are limited by the small sample sizes and inconsistent validation methodology in the reviewed studies.

12.
Neuroepidemiology ; 58(2): 120-133, 2024.
Article in English | MEDLINE | ID: mdl-38272015

ABSTRACT

INTRODUCTION: The aim of this systematic review and meta-analysis was to evaluate the prevalence of thirteen neurological manifestations in people affected by COVID-19 during the acute phase and at 3, 6, 9 and 12-month follow-up time points. METHODS: The study protocol was registered with PROSPERO (CRD42022325505). MEDLINE (PubMed), Embase, and the Cochrane Library were used as information sources. Eligible studies included original articles of cohort studies, case-control studies, cross-sectional studies, and case series with ≥5 subjects that reported the prevalence and type of neurological manifestations, with a minimum follow-up of 3 months after the acute phase of COVID-19 disease. Two independent reviewers screened studies from January 1, 2020, to June 16, 2022. The following manifestations were assessed: neuromuscular disorders, encephalopathy/altered mental status/delirium, movement disorders, dysautonomia, cerebrovascular disorders, cognitive impairment/dementia, sleep disorders, seizures, syncope/transient loss of consciousness, fatigue, gait disturbances, anosmia/hyposmia, and headache. The pooled prevalence and their 95% confidence intervals were calculated at the six pre-specified times. RESULTS: 126 of 6,565 screened studies fulfilled the eligibility criteria, accounting for 1,542,300 subjects with COVID-19 disease. Of these, four studies only reported data on neurological conditions other than the 13 selected. The neurological disorders with the highest pooled prevalence estimates (per 100 subjects) during the acute phase of COVID-19 were anosmia/hyposmia, fatigue, headache, encephalopathy, cognitive impairment, and cerebrovascular disease. At 3-month follow-up, the pooled prevalence of fatigue, cognitive impairment, and sleep disorders was still 20% and higher. At six- and 9-month follow-up, there was a tendency for fatigue, cognitive impairment, sleep disorders, anosmia/hyposmia, and headache to further increase in prevalence. At 12-month follow-up, prevalence estimates decreased but remained high for some disorders, such as fatigue and anosmia/hyposmia. Other neurological disorders had a more fluctuating occurrence. DISCUSSION: Neurological manifestations were prevalent during the acute phase of COVID-19 and over the 1-year follow-up period, with the highest overall prevalence estimates for fatigue, cognitive impairment, sleep disorders, anosmia/hyposmia, and headache. There was a downward trend over time, suggesting that neurological manifestations in the early post-COVID-19 phase may be long-lasting but not permanent. However, especially for the 12-month follow-up time point, more robust data are needed to confirm this trend.


Subject(s)
COVID-19 , Cerebrovascular Disorders , Nervous System Diseases , Sleep Wake Disorders , Humans , COVID-19/epidemiology , Anosmia , Prevalence , Cross-Sectional Studies , Nervous System Diseases/epidemiology , Headache , Fatigue/epidemiology
13.
J Neurol Sci ; 455: 120858, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37948972

ABSTRACT

BACKGROUND: Pre-existing neurological diseases have been identified as risk factors for severe COVID-19 infection and death. There is a lack of comprehensive literature review assessing the relationship between pre-existing neurological conditions and COVID-19 outcomes. Identification of high risk groups is critical for optimal treatment and care. METHODS: A literature review was conducted for systematic reviews, meta-analyses, and scoping reviews published between January 1, 2020 and January 1, 2023. Literature assessing individuals with pre-existing neurological diseases and COVID-19 infection was included. Information regarding infection severity was extracted, and potential limitations were identified. RESULTS: Thirty-nine articles met inclusion criteria, with data assessing >3 million patients from 51 countries. 26/51 (50.9%) of countries analyzed were classified as high income, while the remaining represented middle-low income countries (25/51; 49.0%). A majority of evidence focused on the impact of cerebrovascular disease (17/39; 43.5%) and dementia (5/39; 12.8%) on COVID-19 severity and mortality. 92.3% of the articles (36/39) suggested a significant association between neurological conditions and increased risk of severe COVID-19 and mortality. Cerebrovascular disease, dementia, Parkinson's disease, and epilepsy were associated with increased COVID severity and mortality. CONCLUSION: Pre-existing neurological diseases including cerebrovascular disease, Alzheimer's disease and other dementias, epilepsy, and Parkinson's disease are significant risk factors for severity of COVID-19 infection and mortality in the acute infectious period. Given that 61.5% (24/39) of the current evidence only includes data from 2020, further updated literature is crucial to identify the relationship between chronic neurological conditions and clinical characteristics of COVID-19 variants.


Subject(s)
COVID-19 , Cerebrovascular Disorders , Coinfection , Dementia , Epilepsy , Parkinson Disease , Humans , COVID-19/epidemiology , SARS-CoV-2 , Systematic Reviews as Topic , Epilepsy/complications , Epilepsy/epidemiology
14.
Curr Med Chem ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37921179

ABSTRACT

Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.

15.
J Neurol Sci ; 454: 120827, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37856998

ABSTRACT

Post-acute neurological sequelae of COVID-19 affect millions of people worldwide, yet little data is available to guide treatment strategies for the most common symptoms. We conducted a scoping review of PubMed/Medline from 1/1/2020-4/1/2023 to identify studies addressing diagnosis and treatment of the most common post-acute neurological sequelae of COVID-19 including: cognitive impairment, sleep disorders, headache, dizziness/lightheadedness, fatigue, weakness, numbness/pain, anxiety, depression and post-traumatic stress disorder. Utilizing the available literature and international disease-specific society guidelines, we constructed symptom-based differential diagnoses, evaluation and management paradigms. This pragmatic, evidence-based consensus document may serve as a guide for a holistic approach to post-COVID neurological care and will complement future clinical trials by outlining best practices in the evaluation and treatment of post-acute neurological signs/symptoms.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , COVID-19/complications , Anxiety/etiology , Anxiety/therapy , Consensus , Diagnosis, Differential , Disease Progression , Dizziness/diagnosis , Dizziness/etiology , Dizziness/therapy
16.
J Neurovirol ; 29(6): 678-691, 2023 12.
Article in English | MEDLINE | ID: mdl-37851324

ABSTRACT

Unbiased high-throughput sequencing (HTS) has enabled new insights into the diversity of agents implicated in central nervous system (CNS) infections. The addition of positive selection capture methods to HTS has enhanced the sensitivity while reducing sequencing costs and the complexity of bioinformatic analysis. Here we report the use of virus capture-based sequencing for vertebrate viruses (VirCapSeq-VERT) and bacterial capture sequencing (BacCapSeq) in investigating CNS infections. Thirty-four samples were categorized: (1) patients with definitive CNS infection by routine testing; (2) patients meeting clinically the Brighton criteria (BC) for meningoencephalitis; (3) patients with presumptive infectious etiology highest on the differential. RNA extracts from cerebrospinal fluid (CSF) were used for VirCapSeq-VERT, and DNA extracts were used for BacCapSeq analysis. Among 8 samples from known CNS infections in group 1, VirCapSeq and BacCapSeq confirmed 3 expected diagnoses (42.8%), were negative in 2 (25%), yielded an alternative result in 1 (11.1%), and did not detect 2 expected negative pathogens. The confirmed cases identified HHV-6, HSV-2, and VZV while the negative samples included JCV and HSV-2. In groups 2 and 3, 11/26 samples (42%) were positive for at least one pathogen; however, 27% of the total samples (7/26) were positive for commensal organisms. No microbial nucleic acids were detected in negative control samples. HTS showed limited promise for pathogen identification in presumed CNS infectious diseases in our small sample. Before conducting larger-scale prospective studies to assess the clinical value of this novel technique, clinicians should understand the benefits and limitations of using this modality.


Subject(s)
Meningoencephalitis , Viruses , Humans , Prospective Studies , High-Throughput Nucleotide Sequencing/methods , Herpesvirus 2, Human/genetics
17.
Molecules ; 28(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836676

ABSTRACT

The purpose of this study was to develop a composite film composed of eugenol Pickering emulsion and pullulan-gelatin, and to evaluate its preservation effect on chilled beef. The prepared composite film was comprehensively evaluated in terms of the stability of emulsion, the physical properties of the film, and an analysis of freshness preservation for chilled beef. The emulsion size (296.0 ± 10.2 nm), polydispersity index (0.457 ± 0.039), and potential (20.1 ± 0.9 mV) proved the success of emulsion. At the same time, the films displayed good mechanical and barrier properties. The index of beef preservation also indicated that eugenol was a better active ingredient than clove essence oil, which led to the rise of potential of hydrogen, chroma and water content, and effectively inhibited microbial propagation, protein degradation and lipid oxidation. These results suggest that the prepared composites can be used as promising materials for chilled beef preservation.


Subject(s)
Edible Films , Eugenol , Animals , Cattle , Eugenol/pharmacology , Gelatin , Emulsions , Clove Oil
18.
Int Immunopharmacol ; 124(Pt A): 110845, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690241

ABSTRACT

Orphan receptors constitute a historically varied subsection of a superfamily of nuclear receptors. Nuclear receptors regulate gene expression in response to ligand signals and are particularly alluring therapeutic targets for chronic illnesses. Neuroinflammation and neurodegenerative diseases have been linked to these orphan nuclear receptors. Preclinical and clinical evidence suggests that orphan receptors could serve as future targets in neuroinflammation, such as Parkinson's disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), and Cerebral Ischemia. Given the therapeutic relevance of certain orphan receptors in a variety of disorders, their potential in neuroinflammation remains unproven. There is substantial evidence that ligand-activated transcription factors have great promise for preventing neurodegenerative and neurological disorders, with certain orphan nuclear receptors i.e., PPARγ, NR4As, and orphan GPCRs holding particularly high potential. Based on previous findings, we attempted to determine the contribution of PPAR, NR4As, and orphan GPCRs-regulated neuroinflammation to the pathogenesis of these disorders and their potential to become novel therapeutic targets.

19.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615648

ABSTRACT

Asparagus species is recognized as a perennial herb with several valuable functional ingredients, and has been widely used as medicine and food since ancient times. Among its main chemical constituents, saponins play a vital role in the health benefits and biological activities including anti-cancer, antioxidant, immunomodulatory, anti-microbial, anti-inflammatory, and hypoglycemic. This review summarizes the preparation methods, structure and classification, biological functions, as well as the food and non-food applications of asparagus saponins, with a special emphasis on its anti-cancer effects in vitro and in vivo. Further, the main challenges and limitations of the current research trends in asparagus saponins are highlighted after a detailed analysis of the recent research information. This review bridges the gap between bioactive components and human health and aids current research on functional and health-promoting foods and medicinal application of Asparagus saponins.

20.
Cell Rep Methods ; 3(7): 100533, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37533636

ABSTRACT

Single-cell transcriptomics allows characterization of cerebrospinal fluid (CSF) cells at an unprecedented level. Here, we report a robust cryopreservation protocol adapted for the characterization of fragile CSF cells by single-cell RNA sequencing (RNA-seq) in moderate- to large-scale studies. Fresh CSF was collected from twenty-one participants at two independent sites. Each CSF sample was split into two fractions: one was processed fresh, while the second was cryopreserved for months and profiled after thawing. B and T cell receptor sequencing was also performed. Our comparison of fresh and cryopreserved data from the same individuals demonstrates highly efficient recovery of all known CSF cell types. We find no significant difference in cell type proportions and cellular transcriptomes between fresh and cryopreserved cells. Results were comparable at both sites and with different single-cell sequencing chemistries. Cryopreservation did not affect recovery of T and B cell clonotype diversity. Our CSF cell cryopreservation protocol provides an important alternative to fresh processing of fragile CSF cells.


Subject(s)
Cryopreservation , Transcriptome , Humans , Transcriptome/genetics , Cryopreservation/methods , Gene Expression Profiling/methods , B-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...