Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Family Med Prim Care ; 13(3): 1073-1078, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38736825

ABSTRACT

Background: Hypothyroidism is the result of impaired production and secretion of thyroid hormones. The cardiovascular system is affected by fluctuations in thyroid hormone levels. Stressful events or stressors can affect the hypothalamic-pituitary-thyroid (HPT) axis and psychological and physiological responses. Stress increases thyroid hormone levels while decreasing TSH levels, which exacerbates autoimmune thyroid disease. Aim: To evaluate the relationship between stress and primary hypothyroidism. Methods: A total of 77 newly diagnosed hypothyroid patients (TSH >5.0 mIU/L) and 77 healthy adults (TSH 0.5-5.0 mIU/L) were enrolled. During a brief general physical examination, the following values were measured: height, weight, blood pressure, pulse, and pulse rate. A brief systemic examination of the cardiovascular system and lungs was also performed to rule out systemic diseases. Heart rate variability (HRV) processing and analysis were performed using Pro LabChart (PowerLab 8Pro) data analysis software from AD Instrument. Results: Mean Avg. RR was significantly higher, RM SSD and pRR50 were significantly lower in cases than in controls. Mean HF was significantly lower and LF/HF (frequency range) was significantly higher in cases than in controls. Mean PSS was significantly higher in cases (25.82 ± 2.83) than in controls (22.47 ± 2.10). The majority of cases (54.5%) had a high stress level. The TSH level showed a highly significant correlation with the LF/HF ratio and with the PSS score. Conclusion: The mean Avg. RR and HF were significantly higher, RM SSD and pRR50 and LF/HF (frequency range) were significantly lower in hypothyroid patients.

2.
J Bacteriol ; 206(1): e0035623, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38169297

ABSTRACT

The termination factor Rho, an ATP-dependent RNA translocase, preempts pervasive transcription processes, thereby rendering genome integrity in bacteria. Here, we show that the loss of Rho function raised the intracellular pH to >8.0 in Escherichia coli. The loss of Rho function upregulates tryptophanase-A (TnaA), an enzyme that catabolizes tryptophan to produce indole, pyruvate, and ammonia. We demonstrate that the enhanced TnaA function had produced the conjugate base ammonia, raising the cellular pH in the Rho-dependent termination defective strains. On the other hand, the constitutively overexpressed Rho lowered the cellular pH to about 6.2, independent of cellular ammonia levels. Since Rho overexpression may increase termination activities, the decrease in cellular pH could result from an excess H+ ion production during ATP hydrolysis by overproduced Rho. Furthermore, we performed in vivo termination assays to show that the efficiency of Rho-dependent termination was increased at both acidic and basic pH ranges. Given that the Rho level remained unchanged, the alkaline pH increases the termination efficiency by stimulating Rho's catalytic activity. We conducted the Rho-mediated RNA release assay from a stalled elongation complex to show an efficient RNA release at alkaline pH, compared to the neutral or acidic pH, that supports our in vivo observation. Whereas acidic pH appeared to increase the termination function by elevating the cellular level of Rho. This study is the first to link Rho function to the cellular pH homeostasis in bacteria. IMPORTANCE The current study shows that the loss or gain of Rho-dependent termination alkalizes or acidifies the cytoplasm, respectively. In the case of loss of Rho function, the tryptophanase-A enzyme is upregulated, and degrades tryptophan, producing ammonia to alkalize cytoplasm. We hypothesize that Rho overproduction by deleting its autoregulatory DNA portion increases termination function, causing excessive ATP hydrolysis to produce H+ ions and cytoplasmic acidification. Therefore, this study is the first to unravel a relationship between Rho function and intrinsic cellular pH homeostasis. Furthermore, the Rho level increases in the absence of autoregulation, causing cytoplasmic acidification. As intracellular pH plays a critical role in enzyme function, such a connection between Rho function and alkalization will have far-reaching implications for bacterial physiology.


Subject(s)
Transcription, Genetic , Tryptophan , Tryptophan/genetics , Tryptophan/metabolism , Tryptophanase/genetics , Tryptophanase/metabolism , Ammonia/metabolism , Rho Factor/genetics , Rho Factor/metabolism , Escherichia coli/metabolism , RNA/metabolism , Homeostasis , Adenosine Triphosphate/metabolism , Hydrogen-Ion Concentration
4.
J Environ Sci Eng ; 54(4): 472-80, 2012 Oct.
Article in English | MEDLINE | ID: mdl-25151710

ABSTRACT

The zeolite ZX1 synthesized from fly ash was employed as effective adsorbent for removal of methylene blue and methyl orange, from its aqueous solution. In the present study, X-type and A-type zeolite were synthesized by alkali fusion, followed by hydrothermal treatment. The synthesized zeolite was then characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM). Solution pH has an important role in the the adsorption behavior of ZX1. Higher solution pH results in higher adsorption capacity. The equilibrium results were well described by Freundlich isotherm model. Physical regeneration at high temperature showed that the adsorbent exhibits somehow lower adsorption capacity as compared to the fresh sample. The values of changes in enthalpy (deltaH(o)) and entropy (deltaS(o)) during the adsorption process were found to be -20.85 kJ/mol and -90.61 J/mol K(-1). Adsorption of methyl orange over Zeolite ZX1 is much higher than ZA1. Correlation coefficient was found to be 0.998.


Subject(s)
Azo Compounds/isolation & purification , Methylene Blue/isolation & purification , Water Purification , Zeolites/chemical synthesis , Adsorption , Waste Disposal, Fluid , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...