Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Med Biol Eng Comput ; 60(12): 3475-3496, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36205834

ABSTRACT

The coronavirus infection continues to spread rapidly worldwide, having a devastating impact on the health of the global population. To fight against COVID-19, we propose a novel autonomous decision-making process which combines two modules in order to support the decision-maker: (1) Bayesian Networks method-based data-analysis module, which is used to specify the severity of coronavirus symptoms and classify cases as mild, moderate, and severe, and (2) autonomous decision-making module-based association rules mining method. This method allows the autonomous generation of the adequate decision based on the FP-growth algorithm and the distance between objects. To build the Bayesian Network model, we propose a novel data-based method that enables to effectively learn the network's structure, namely, MIGT-SL algorithm. The experimentations are performed over pre-processed discrete dataset. The proposed algorithm allows to correctly generate 74%, 87.5%, and 100% of the original structure of ALARM, ASIA, and CANCER networks. The proposed Bayesian model performs well in terms of accuracy with 96.15% and 94.77%, respectively, for binary and multi-class classification. The developed decision-making model is evaluated according to its utility in solving the decisional problem, and its accuracy of proposing the adequate decision is about 97.80%.


Subject(s)
COVID-19 , Humans , Bayes Theorem , Algorithms
4.
Biomed Res Int ; 2020: 3764653, 2020.
Article in English | MEDLINE | ID: mdl-32851065

ABSTRACT

In this research, the photoplethysmogram (PPG) waveform analysis is utilized to develop a logistic regression-based predictive model for the classification of diabetes. The classifier has three predictors age, b/a, and SP indices in which they achieved an overall accuracy of 92.3% in the prediction of diabetes. In this study, a total of 587 subjects were enrolled. A total of 459 subjects were used for model training and development, while the rest of the 128 subjects were used for model testing and validation. The classifier was able to diagnose 63 patients correctly as diabetes while 27 subjects were wrongly classified as nondiabetes with an accuracy of 70%. Again, the model classified 479 subjects as nondiabetes correctly while it incorrectly classified 18 subjects as diabetes with an accuracy of 96.4%. Finally, the proposed model revealed an overall predictive accuracy of 92.3% which makes it a reliable surrogate measure for diabetes classification and prediction in clinical settings.


Subject(s)
Diabetes Mellitus/classification , Diabetes Mellitus/diagnosis , Photoplethysmography/methods , Adult , Aged , Diabetes Mellitus/blood , Diabetes Mellitus/pathology , Female , Humans , Logistic Models , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...