Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(19): 5737-5745, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38686670

ABSTRACT

Tungsten oxide (WO3) doped indium oxide (IWO) field-effect transistors (FET), synthesized using atomic layer deposition (ALD) for three-dimensional integration and back-end-of-line (BEOL) compatibility, are demonstrated. Low-concentration (1∼4 W atom %) WO3-doping in In2O3 films is achieved by adjusting cycle ratios of the indium and tungsten precursors with the oxidant coreactant. Such doping suppresses oxygen deficiency from In2O2.5 to In2O3 stoichiometry with only 1 atom % W, allowing devices to turn off stably and enhancing threshold voltage stability. The ALD IWO FETs exhibit superior performance, including a low subthreshold slope of 67 mV/decade and negligible hysteresis. Strong tunability of the threshold voltage (Vth) is achieved through W concentration tuning, with 2 atom % IWO FETs showing an optimized Vth for enhancement-mode and a high drain current. ALD IWO FETs have remarkable stability under bias stress and nearly ideal performance extending to sub-100 nm channel lengths, making them promising candidates for high-performance monolithic 3D integrated devices.

2.
ACS Appl Mater Interfaces ; 15(43): 50246-50253, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37856882

ABSTRACT

Ferroelectric materials have been widely researched for applications in memory and energy storage. Among these materials and benefiting from their excellent chemical compatibility with complementary metal-oxide-semiconductor (CMOS) devices, hafnia-based ferroelectric thin films hold great promise for highly scaled semiconductor memories, including nonvolatile ferroelectric capacitors and transistors. However, variation in the switched polarization of this material during field cycling and a limited understanding of the responsible mechanisms have impeded their implementation in technology. Here, we show that ferroelectric Hf0.5Zr0.5O2 (HZO) capacitors that are nearly free of polarization "wake-up"─a gradual increase in switched polarization as a function of the number of switching cycles─can be achieved by introducing ultrathin HfO2 buffer layers at the HZO/electrodes interface. High-resolution transmission electron microscopy (HRTEM) reveals crystallite sizes substantially greater than the film thickness for the buffer layer capacitors, indicating that the presence of the buffer layers influences the crystallization of the film (e.g., a lower ratio of nucleation rate to growth rate) during postdeposition annealing. This evidently promotes the formation of a polar orthorhombic (O) phase in the as-fabricated buffer layer samples. Synchrotron X-ray diffraction (XRD) reveals the conversion of the nonpolar tetragonal (T) phase to the polar orthorhombic (O) phase during electric field cycling in the control (no buffer) devices, consistent with the polarization wake-up observed for these capacitors. The extent of T-O transformation in the nonbuffer samples is directly dependent on the duration over which the field is applied. These results provide insight into the role of the HZO/electrodes interface in the performance of hafnia-based ferroelectrics and the mechanisms driving the polarization wake-up effect.

3.
J Appl Crystallogr ; 56(Pt 5): 1480-1484, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37791352

ABSTRACT

The general-purpose powder diffractometer beamline (BL2-1) at the Stanford Synchrotron Radiation Lightsource (SSRL) is described. The evolution of design and performance of BL2-1 are presented, in addition to current operating specifications, applications and measurement capabilities. Recent developments involve a robotic sample changer enabling high-throughput X-ray diffraction measurements, applicable to mail-in and remote operations. In situ and operando capabilities to measure samples with different form factors (e.g. capillary, flat plate or thin film, and transmission) and under variable experimental conditions are discussed. Several example datasets and accompanying Rietveld refinements are presented.

4.
Rev Sci Instrum ; 93(4): 043702, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35489885

ABSTRACT

Laser powder bed fusion (LPBF) is a highly dynamic multi-physics process used for the additive manufacturing (AM) of metal components. Improving process understanding and validating predictive computational models require high-fidelity diagnostics capable of capturing data in challenging environments. Synchrotron x-ray techniques play a vital role in the validation process as they are the only in situ diagnostic capable of imaging sub-surface melt pool dynamics and microstructure evolution during LPBF-AM. In this article, a laboratory scale system designed to mimic LPBF process conditions while operating at a synchrotron facility is described. The system is implemented with process accurate atmospheric conditions, including an air knife for active vapor plume removal. Significantly, the chamber also incorporates a diagnostic sensor suite that monitors emitted optical, acoustic, and electronic signals during laser processing with coincident x-ray imaging. The addition of the sensor suite enables validation of these industrially compatible single point sensors by detecting pore formation and spatter events and directly correlating the events with changes in the detected signal. Experiments in the Ti-6Al-4V alloy performed at the Stanford Synchrotron Radiation Lightsource using the system are detailed with sufficient sampling rates to probe melt pool dynamics. X-ray imaging captures melt pool dynamics at frame rates of 20 kHz with a 2 µm pixel resolution, and the coincident diagnostic sensor data are recorded at 470 kHz. This work shows that the current system enables the in situ detection of defects during the LPBF process and permits direct correlation of diagnostic signatures at the exact time of defect formation.


Subject(s)
Lasers , Synchrotrons , Powders , Radiography , X-Rays
5.
J Appl Crystallogr ; 54(Pt 6): 1799-1810, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34963768

ABSTRACT

A key step in the analysis of powder X-ray diffraction (PXRD) data is the accurate determination of unit-cell lattice parameters. This step often requires significant human intervention and is a bottleneck that hinders efforts towards automated analysis. This work develops a series of one-dimensional convolutional neural networks (1D-CNNs) trained to provide lattice parameter estimates for each crystal system. A mean absolute percentage error of approximately 10% is achieved for each crystal system, which corresponds to a 100- to 1000-fold reduction in lattice parameter search space volume. The models learn from nearly one million crystal structures contained within the Inorganic Crystal Structure Database and the Cambridge Structural Database and, due to the nature of these two complimentary databases, the models generalize well across chemistries. A key component of this work is a systematic analysis of the effect of different realistic experimental non-idealities on model performance. It is found that the addition of impurity phases, baseline noise and peak broadening present the greatest challenges to learning, while zero-offset error and random intensity modulations have little effect. However, appropriate data modification schemes can be used to bolster model performance and yield reasonable predictions, even for data which simulate realistic experimental non-idealities. In order to obtain accurate results, a new approach is introduced which uses the initial machine learning estimates with existing iterative whole-pattern refinement schemes to tackle automated unit-cell solution.

6.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34039712

ABSTRACT

Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism.

7.
Inorg Chem ; 59(18): 13364-13370, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32880451

ABSTRACT

Hybrid perovskites are a promising class of materials for a range of optoelectronic applications. Many material properties are dictated by the details of the synthetic process, yet a mechanistic understanding is lacking for the majority of these materials. We have studied the formation of methylammonium lead iodide films derived from a lead chloride precursor to understand both the casting solution chemistry and its influence on the final, largely chlorine-free, film. Using solution-phase extended X-ray absorption spectroscopy, we observe a halide exchange with the primary solution plumbate species identified as PbI2.5Cl0.33. The mixed halide plumbate solution species leads to formation of the crystalline intermediate phase of (CH3NH3)2PbI3Cl. Using in situ synchrotron X-ray diffraction, we show that compositional control of the casting solution can control the annealing kinetics of film formation. Our study demonstrates the importance of solution-phase chemistry and its impact on lead halide perovskite synthesis.

8.
Sci Rep ; 10(1): 1981, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32029753

ABSTRACT

Laser powder bed fusion (LPBF) is a method of additive manufacturing characterized by the rapid scanning of a high powered laser over a thin bed of metallic powder to create a single layer, which may then be built upon to form larger structures. Much of the melting, resolidification, and subsequent cooling take place at much higher rates and with much higher thermal gradients than in traditional metallurgical processes, with much of this occurring below the surface. We have used in situ high speed X-ray diffraction to extract subsurface cooling rates following resolidification from the melt and above the ß-transus in titanium alloy Ti-6Al-4V. We observe an inverse relationship with laser power and bulk cooling rates. The measured cooling rates are seen to correlate to the level of residual strain borne by the minority ß-Ti phase with increased strain at slower cooling rates. The α-Ti phase shows a lattice contraction which is invariant with cooling rate. We also observe a broadening of the diffraction peaks which is greater for the ß-Ti phase at slower cooling rates and a change in the relative phase fraction following LPBF. These results provide a direct measure of the subsurface thermal history and demonstrate its importance to the ultimate quality of additively manufactured materials.

9.
Nat Commun ; 10(1): 1987, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31040270

ABSTRACT

Laser powder bed fusion additive manufacturing is an emerging 3D printing technique for the fabrication of advanced metal components. Widespread adoption of it and similar additive technologies is hampered by poor understanding of laser-metal interactions under such extreme thermal regimes. Here, we elucidate the mechanism of pore formation and liquid-solid interface dynamics during typical laser powder bed fusion conditions using in situ X-ray imaging and multi-physics simulations. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. We develop a universal mitigation strategy which eliminates this pore formation process and improves the geometric quality of melt tracks. Our results provide insight into the physics of laser-metal interaction and demonstrate the potential for science-based approaches to improve confidence in components produced by laser powder bed fusion.

10.
Nat Commun ; 9(1): 2553, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29959330

ABSTRACT

Hydrothermal synthesis is challenging in metal oxide systems with diverse polymorphism, as reaction products are often sensitive to subtle variations in synthesis parameters. This sensitivity is rooted in the non-equilibrium nature of low-temperature crystallization, where competition between different metastable phases can lead to complex multistage crystallization pathways. Here, we propose an ab initio framework to predict how particle size and solution composition influence polymorph stability during nucleation and growth. We validate this framework using in situ X-ray scattering, by monitoring how the hydrothermal synthesis of MnO2 proceeds through different crystallization pathways under varying solution potassium ion concentrations ([K+] = 0, 0.2, and 0.33 M). We find that our computed size-dependent phase diagrams qualitatively capture which metastable polymorphs appear, the order of their appearance, and their relative lifetimes. Our combined computational and experimental approach offers a rational and systematic paradigm for the aqueous synthesis of target metal oxides.

11.
Rev Sci Instrum ; 89(5): 055101, 2018 May.
Article in English | MEDLINE | ID: mdl-29864819

ABSTRACT

In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ∼1.1 µm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ∼50 × 100 µm area. We also discuss the utility of these measurements for model validation and process improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...