Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Hum Reprod ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741233

ABSTRACT

STUDY QUESTION: What is the functional significance of Tex13b in male germ cell development and differentiation? SUMMARY ANSWER: Tex13b regulates male germ cell differentiation by metabolic reprogramming during spermatogenesis. WHAT IS KNOWN ALREADY: Studies in mice and humans suggest that TEX13B is a transcription factor and is exclusively expressed in germ cells. STUDY DESIGN, SIZE, DURATION: We sequenced the coding regions of TEX13B in 628 infertile men and 427 ethnically matched fertile control men. Further, to identify the molecular function of Tex13b, we created a Tex13b knockout and conditional overexpression system in GC-1spg (hereafter, GC-1) cells. PARTICIPANTS/MATERIALS, SETTING, METHODS: Our recent exome sequencing study identified novel candidate genes for male infertility. TEX13B was found to be one of the potential candidates, hence we explored the role of TEX13B in male infertility within a large infertile case-control cohort. We performed functional analyses of Tex13b in a GC-1 cell line using CRISPR-Cas9. We differentially labelled the cell proteins by stable isotope labelling of amino acids in cell culture (SILAC) and performed mass spectrometry-based whole-cell proteomics to identify the differential protein regulation in knockout cells compared to wild-type cells. We found that Tex13b knockout leads to downregulation of the OXPHOS complexes and upregulation of glycolysis genes, which was further validated by western blotting. These results were further confirmed by respirometry analysis in Tex13b knockout cells. Further, we also performed a conditional overexpression of TEX13B in GC-1 cells and studied the expression of OXPHOS complex proteins by western blotting. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a rare variant, rs775429506 (p.Gly237Glu), exclusively in two non-obstructive-azoospermia (NOA) men, that may genetically predispose these men for infertility. Further, we demonstrated that Tex13b functions in the transcription regulation of OXPHOS complexes. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: We examined the function of Tex13b in GC-1 in vitro by knocking out and conditional overexpression, for understanding the function of Tex13b in germ cells. Unfortunately, this could not be replicated in either an animal model or in patient-derived tissue due to the non-availability of an animal model or patient's testis biopsies. WIDER IMPLICATIONS OF THE FINDINGS: This study identified that Tex13b plays an important role in male germ cell development and differentiation. The findings of this study would be useful for screening infertile males with spermatogenic failure and counselling them before the implementation of assisted reproduction technique(s). STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by the Council of Scientific and Industrial Research (CSIR) under the network project (BSC0101 and MLP0113) and SERB, the Department of Science and Technology, Government of India (J C Bose Fellowship: JCB/2019/000027). The authors do not have any competing interest.

2.
Mitochondrion ; 76: 101884, 2024 May.
Article in English | MEDLINE | ID: mdl-38626841

ABSTRACT

Linguistic data from South Asia identified several language isolates in the subcontinent. The Vedda, an indigenous population of Sri Lanka, are the least studied amongst them. Therefore, to understand the initial peopling of Sri Lanka and the genetic affinity of the Vedda with other populations in Eurasia, we extensively studied the high-resolution autosomal and mitogenomes from the Vedda population of Sri Lanka. Our autosomal analyses suggest a close genetic link of Vedda with the tribal populations of India despite no evidence of close linguistic affinity, thus suggesting a deep genetic link of the Vedda with these populations. The mitogenomic analysis supports this association by pointing to an ancient link with Indian populations. We suggest that the Vedda population is a genetically drifted group with limited gene flow from neighbouring Sinhalese and Sri Lankan Tamil populations. Interestingly, the genetic ancestry sharing of Vedda neglects the isolation-by-distance model. Collectively, the demography of Sri Lanka is unique, where Sinhalese and Sri Lankan Tamil populations excessively admixed, whilst Vedda largely preserved their isolation and deep genetic association with India.


Subject(s)
Genetics, Population , Humans , Sri Lanka , Gene Flow , Genome, Mitochondrial , Language , India , Genetic Variation , Asia, Southern
3.
Mitochondrion ; 76: 101853, 2024 May.
Article in English | MEDLINE | ID: mdl-38423268

ABSTRACT

Mitochondria are an indispensable part of the cell that plays a crucial role in regulating various signaling pathways, energy metabolism, cell differentiation, proliferation, and cell death. Since mitochondria have their own genetic material, they differ from their nuclear counterparts, and dysregulation is responsible for a broad spectrum of diseases. Mitochondrial dysfunction is associated with several disorders, including neuro-muscular disorders, cancer, and premature aging, among others. The intricacy of the field is due to the cross-talk between nuclear and mitochondrial genes, which has also improved our knowledge of mitochondrial functions and their pathogenesis. Therefore, interdisciplinary research and communication are crucial for mitochondrial biology and medicine due to the challenges they pose for diagnosis and treatment. The ninth annual conference of the Society for Mitochondria Research and Medicine (SMRM)- India, titled "Mitochondria in Biology and Medicine" was organized at the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India, on June 21-23, 2023. The latest advancements in the field of mitochondrial biology and medicine were discussed at the conference. In this article, we summarize the entire event for the benefit of researchers working in the field of mitochondrial biology and medicine.


Subject(s)
Mitochondria , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Animals , India
4.
Mitochondrion ; 75: 101828, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128747

ABSTRACT

Ladakh lies at a strategic location between the Indus River valley and the Hindu Khush Mountains, which makes the "Land of high passes" one of the major routes of movement. Through the years the region has faced multi-layered cultural movements, genetic assimilation and demographic changes. The initial settlement in the years goes back to the early Neolithic age and still continues despite its harsh, unhospitable and cold climate. Previous studies mostly covered the patrilineal markers of the region and an in-depth study lacked to represent the matrilineal ancestry and possible genetic inflow in the region. Hence, our current study first time generated complete mitogenomes of 108 unrelated individuals from Ladakh belonging to three population groups namely, Changpa (n = 38), Brokpa (n = 32) and Monpa (n = 38). In the in-depth analysis, we found that the mitogenome of the three Ladakhi groups are highly diverse in terms of maternal haplogroup distribution carrying lineages specific to East Asia (M9a), Tibbet (A21) and South Asia (M3, M30, U2). In our analysis we found that Changpa and Monpa probably have shared maternal ancestry compared to Brokpa, which is very distinct and also later suffered possible historical Bottleneck. Bayesian evolutionary and Network analysis indicates more ancient maternal lineage of Changpa and Monpa in terms of M9a haplotypes, but they also share some genetic history with Tibeto-Burman speakers in past. These findings conclusively indicate possible matrilineal genetic inflow in Ladakh from three directions, primarily from East Asia or South East Asia during post-glacial, West Eurasia and also from South Asia.


Subject(s)
Biological Evolution , Genetics, Population , Humans , Bayes Theorem , India , Haplotypes , Genetic Variation , Phylogeny , DNA, Mitochondrial/genetics
5.
Genome Biol Evol ; 15(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38079532

ABSTRACT

Evolutionary event has not only altered the genetic structure of human populations but also associated with social and cultural transformation. South Asian populations were the result of migration and admixture of genetically and culturally diverse groups. Most of the genetic studies pointed to large-scale admixture events between Ancestral North Indian (ANI) and Ancestral South Indian (ASI) groups, also additional layers of recent admixture. In the present study, we have analyzed 213 individuals inhabited in South-west coast India with traditional warriors and feudal lord status and historically associated with migratory events from North/North West India and possible admixture with West Eurasian populations, whose genetic links are still missing. Analysis of autosomal Single Nucleotide Polymorphism (SNP) markers suggests that these groups possibly derived their ancestry from some groups of North West India having additional Middle Eastern genetic components. Higher distribution of West Eurasian mitochondrial haplogroups also points to female-mediated admixture. Estimation of Effective Migration Surface (EEMS) analysis indicates Central India and Godavari basin as a crucial transition zone for population migration from North and North West India to South-west coastal India. Selection screen using 3 distinct outlier-based approaches revealed genetic signatures related to Immunity and protection from Viral infections. Thus, our study suggests that the South-west coastal groups with traditional warriors and feudal lords' status are of a distinct lineage compared to Dravidian and Gangetic plain Indo-Europeans and are remnants of very early migrations from North West India following the Godavari basin to Karnataka and Kerala.


Subject(s)
Genetics, Population , Polymorphism, Single Nucleotide , Humans , Female , Phylogeny , Haplotypes , India , Genetic Variation
6.
Pharmgenomics Pers Med ; 16: 883-893, 2023.
Article in English | MEDLINE | ID: mdl-37750083

ABSTRACT

Background: Mutations in Myosin Binding Protein C (MYBPC3) are one of the most frequent causes of cardiomyopathies in the world, but not much data are available in India. Methods: We carried out targeted direct sequencing of MYBPC3 in 115 hypertrophic (HCM) and 127 dilated (DCM) cardiomyopathies against 197 ethnically matched healthy controls from India. Results: We detected 34 single nucleotide variations in MYBPC3, of which 19 were novel. We found a splice site mutation [(IVS6+2T) T>G] and 16 missense mutations in Indian cardiomyopathies [5 in HCM; E258K, T262S, H287L, R408M, V483A: 4 in DCM; T146N, V321L, A392T, E393K and 7 in both HCM and DCM; L104M, V158M, S236G, R272C, T290A, G522E, A626V], but those were absent in 197 normal healthy controls. Interestingly, we found 7 out of 16 missense mutations (V158M, E258K, R272C, A392T, V483A, G522E, and A626V) in MYBPC3 were altering the evolutionarily conserved native amino acids, accounted for 8.7% and 6.3% in HCM and DCM, respectively. The bioinformatic tools predicted that those 7 missense mutations were pathogenic. Moreover, the co-segregation of those 7 mutations in families further confirmed their pathogenicity. Remarkably, we also identified compound mutations within the MYBPC3 gene of 6 cardiomyopathy patients (5%) with more severe disease phenotype; of which, 3 were HCM (2.6%) [(1. K244K + E258K + (IVS6+2T) T>G); (2. L104M + G522E + A626V); (3. P186P + G522E + A626V]; and 3 were DCM (2.4%) [(1. 5'UTR + A392T; 2. V158M+G522E; and 3.V158M + T262T + A626V]. Conclusion: The present comprehensive study on MYBPC3 has revealed both single and compound mutations in MYBPC3 and their association with disease in Indian Population with Cardiomyopathies. Our findings may perhaps help in initiating diagnostic strategies and eventually recognizing the targets for therapeutic interventions.

7.
Genes (Basel) ; 14(5)2023 04 23.
Article in English | MEDLINE | ID: mdl-37239323

ABSTRACT

Since 2006, Pattanam coastal village of the Ernakulam District in Kerala, India, has witnessed multi-disciplinary archaeological investigations in collaboration with leading research institutions across the world. The results confirm that the Pattanam site could be an integral part of the lost ancient port of Muziris, which, as per the material evidence from Pattanam and its contemporary sites, played an important role in the transoceanic exchanges between 100 BCE (Before Common Era) and 300 CE (Common Era). So far, the material evidence with direct provenance to the maritime exchanges related to ancient cultures of the Mediterranean, West Asian, Red Sea, African, and Asian regions have been identified at Pattanam. However, the genetic evidence supporting the impact of multiple cultures or their admixing is still missing for this important archaeological site of South India. Hence, in the current study, we tried to infer the genetic composition of the skeletal remains excavated from the site in a broader context of South Asian and worldwide maternal affinity. We applied the MassArray-based genotyping approach of mitochondrial makers and observed that ancient samples of Pattanam represent a mixed maternal ancestry pattern of both the West Eurasian ancestry and the South Asian ancestry. We observed a high frequency of West Eurasian haplogroups (T, JT, and HV) and South Asian-specific mitochondrial haplogroups (M2a, M3a, R5, and M6). The findings are consistent with the previously published and ongoing archaeological excavations, in which material remains from over three dozen of sites across the Indian Ocean, Red Sea, and Mediterranean littoral regions have been unearthed. This study confirms that people belonging to multiple cultural and linguistic backgrounds have migrated, probably settled, and eventually died on the South-western coast of India.


Subject(s)
Asian People , Genetics, Population , Humans , India , Racial Groups
8.
Mitochondrion ; 69: 43-56, 2023 03.
Article in English | MEDLINE | ID: mdl-36690315

ABSTRACT

Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , COVID-19/complications , COVID-19/metabolism , Mitochondria/metabolism , DNA, Mitochondrial/metabolism , Immunity, Innate
9.
Am J Hum Biol ; 35(5): e23858, 2023 05.
Article in English | MEDLINE | ID: mdl-36591954

ABSTRACT

OBJECTIVES: The long-term isolation, endogamy practices, and environmental adaptations have shaped the enormous human diversity in India. The genetic and morphological variations in mainland Indians are well studied. However, the data on the Indian Himalayan populations are scattered. Thus, the present study attempts to understand variations in the selected parameter among four Tibeto-Burman speaking ethnic tribal populations from the Darjeeling Hill Region (DHR) in the Eastern Himalaya Biodiversity Hotspot region of India. METHODS: A total of 178 healthy male individuals (Lepcha 98, Sherpa 31, Bhutia 27, and Tibetans 22) living at an altitudinal range of 1467-2258 m above the sea level were studied for the 10 parameters namely, weight (kg), height (cm), body mass index (BMI) (kg/m2 ) systolic and diastolic pressure (mm of Hg), pulse rate (per minute), saturation of peripheral oxygen (SPO2 ) (%), hemoglobin (g/dl), hematocrit (HCT) (%), and blood glucose (mg/dl). The data was statistically analyzed using analysis of variance and multiple linear regression methods. RESULTS: Our analysis revealed comparatively lower hemoglobin and HCT levels, and higher systolic and diastolic blood pressure in the Sherpas followed by the Tibetans. This may be reflecting the persistence of high-altitude adaptation signatures even in lowlands. Interestingly, the Tibetans differed significantly from other populations in terms of their higher body weight, height, and BMI. CONCLUSION: Thus, our study showed the persistence of high altitude signatures in Tibetans and Sherpa inhabited the DHR. Additionally, we also observed significant differences in the anthropometric and physiological parameters among the Tibeto-Burman populations of the DHR.


Subject(s)
Altitude , Ethnicity , Humans , Male , Ethnicity/genetics , Asian People , Blood Pressure , India , Tibet , Adaptation, Physiological/genetics
10.
Neurogenetics ; 24(1): 43-53, 2023 01.
Article in English | MEDLINE | ID: mdl-36580222

ABSTRACT

Dysferlinopathies are a group of limb-girdle muscular dystrophies causing significant disability in the young population. There is a need for studies on large cohorts to describe the clinical, genotypic and natural history in our subcontinent. To describe and correlate the clinical, genetic profile and natural history of genetically confirmed dysferlinopathies. We analysed a retrospective cohort of patients with dysferlinopathy from a single quaternary care centre in India. A total of 124 patients with dysferlinopathy were included (40 females). Median age at onset and duration of illness were 21 years (range, 13-50) and 48 months (range, 8-288), respectively. The average follow-up period was 60 months (range, 12-288). Fifty-one percent had LGMD pattern of weakness at onset; 23.4% each had Miyoshi and proximo-distal type while isolated hyperCKemia was noted in 1.6%. About 60% were born to consanguineous parents and 26.6% had family history of similar illness. Twenty-three patients (18.6%) lost ambulation at follow-up; the median time to loss of independent ambulation was 120 months (range, 72-264). Single-nucleotide variants (SNVs) constituted 78.2% of patients; INDELs 14.5% and 7.3% had both SNVs and INDELs. Earlier age at onset was noted with SNVs. There was no correlation between the other clinical parameters and ambulatory status with the genotype. Thirty-seven (45.7%) novel pathogenic/likely pathogenic (P/LP) variants were identified out of a total of 81 variations. The c.3191G > A variant was the most recurrent mutation. Our cohort constitutes a clinically and genetically heterogeneous group of dysferlinopathies. There is no significant correlation between the clinico-genetic profile and the ambulatory status.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Female , Humans , Retrospective Studies , Muscular Dystrophies, Limb-Girdle/epidemiology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Genetic Association Studies , India
11.
Hum Genet ; 142(2): 167-180, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36242641

ABSTRACT

The Tibetan plateau and high mountain ranges of Nepal are one of the challenging geographical regions inhabited by modern humans. While much of the ethnographic and population-based genetic studies were carried out to investigate the Tibetan and Sherpa highlanders, little is known about the demographic processes that enabled the colonization of the hilly areas of Nepal. Thus, the present study aimed to investigate the past demographic events that shaped the extant Nepalese genetic diversity using mitochondrial DNA (mtDNA) variations from ethnic Nepalese groups. We have analyzed mtDNA sequences of 999 Nepalese and compared data with 38,622 published mtDNA sequences from rest of the world. Our analysis revealed that the genomic landscapes of prehistoric Himalayan settlers of Nepal were similar to that of the low-altitude extant Nepalese (LAN), especially Newar and Magar population groups, but differ from contemporary high-altitude Sherpas. LAN might have derived their East Eurasian ancestry mainly from low-altitude Tibeto-Burmans, who likely have migrated from East Asia and assimilated across the Eastern Himalayas extended from the Eastern Nepal to the North-East of India, Bhutan, Tibet and Northern Myanmar. We also identified a clear genetic sub-structure across different ethnic groups of Nepal based on mtDNA haplogroups and ectodysplasin-A receptor (EDAR) gene polymorphism. Our comprehensive high-resolution mtDNA-based genetic study of Tibeto-Burman communities reconstructs the maternal origins of prehistoric Himalayan populations and sheds light on migration events that have brought most of the East Eurasian ancestry to the present-day Nepalese population.


Subject(s)
DNA, Mitochondrial , Genetics, Population , Humans , DNA, Mitochondrial/genetics , Asian People , Ethnicity/genetics , Tibet , Haplotypes
12.
Hum Mol Genet ; 32(4): 533-542, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36048845

ABSTRACT

Human spermatogenesis requires an orchestrated expression of numerous genes in various germ cell subtypes. Therefore, the genetic landscape of male infertility is highly complex. Known genetic factors alone account for at least 15% of male infertility. However, ~40% of infertile men remain undiagnosed and are classified as idiopathic infertile men. We performed exome sequencing in 47 idiopathic infertile men (discovery cohort), followed by replication study (40 variants in 33 genes) in 844 infertile men and 709 controls using Sequenom MassARRAY® based genotyping. We report 17 variants in twelve genes that comprise both previously reported (DNAH8, DNAH17, FISP2 and SPEF2) and novel candidate genes (BRDT, CETN1, CATSPERD, GMCL1, SPATA6, TSSK4, TSKS and ZNF318) for male infertility. The latter have a strong biological nexus to human spermatogenesis and their respective mouse knockouts are concordant with human phenotypes. One candidate gene CETN1, identified in this study, was sequenced in another independent cohort of 840 infertile and 689 fertile men. Further, CETN1 variants were functionally characterized using biophysical and cell biology approaches. We demonstrate that CETN1 variant- p.Met72Thr leads to multipolar cells, fragmented nuclei during mitosis leading to cell death and show significantly perturbed ciliary disassembly dynamics. Whereas CETN1-5' UTR variant; rs367716858 leads to loss of a methylation site and increased reporter gene expression in vitro. We report a total of eight novel candidate genes identified by exome sequencing, which may have diagnostic relevance and can contribute to improved diagnostic workup and clinical management of male infertility.


Subject(s)
Calcium-Binding Proteins , Infertility, Male , Animals , Humans , Male , Mice , Cell Division , Cytoskeletal Proteins/genetics , Exome Sequencing , Fertility/genetics , Infertility, Male/genetics , Spermatogenesis/genetics , Calcium-Binding Proteins/genetics , Cell Cycle Proteins/genetics
13.
Stem Cell Res ; 65: 102978, 2022 12.
Article in English | MEDLINE | ID: mdl-36403549

ABSTRACT

Myosin binding protein C3 (MYBPC3) is a thick filament contractile protein that interacts with myosin, titin and actin and regulates cardiac muscle contraction. Genetic variations in the MYBPC3 gene are known causal factors for cardiomyopathy and heart failure. Previously, we identified a recurrent MYBPC3 deletion (25 base pairs) among South Asians associated with cardiomyopathy and heart failure. Here, we generated an induced pluripotent stem cell (iPSC) line using peripheral blood mononuclear cells (PBMC) from an Indian harboring MYBPC3 deletion. This iPSC line displayed embryonic stem cell morphology, expressed pluripotency markers, differentiated into three germ layers and exhibited normal karyotype.


Subject(s)
Cardiomyopathies , Carrier Proteins , Heart Failure , Induced Pluripotent Stem Cells , South Asian People , Humans , Cardiomyopathies/genetics , Heart Failure/genetics , Leukocytes, Mononuclear , Cell Line , South Asian People/genetics , Carrier Proteins/genetics , Gene Deletion
14.
F S Sci ; 3(4): 322-330, 2022 11.
Article in English | MEDLINE | ID: mdl-35840050

ABSTRACT

OBJECTIVE: To investigate testis-specific histone 2B (TSH2B) and its gene anomalies in infertile men. DESIGN: Case-control study. SETTING: Basic science laboratory. PATIENT(S): Fertile and infertile men. INTERVENTION(S): Not applicable. MAIN OUTCOME MEASURE(S): The histone and protamine status of sperm was studied by aniline blue and chromomycin A3 staining, respectively. Testis-specific histone 2B, total H2B, and phosphorylated TSH2B (pTSH2B) were estimated by Western blot analysis. The frequency of genetic polymorphisms and rare variants in H2BC1 was studied by Sanger sequencing. Phosphosites on TSH2B in sperm were identified by reverse-phase high-performance liquid chromatography purification of TSH2B followed by mass spectrometric analysis. RESULT(S): Aniline blue and chromomycin A3 staining revealed significantly higher histone retention and low protamine in sperm of infertile men. Sperm TSH2B and total H2B levels were significantly lower in oligozoospermic and oligoasthenozoospermic men (in both groups). The TSH2B levels were comparable in asthenozoospermic men; however, the pTSH2B level was significantly low. The H2BC1 gene sequencing identified 6 variants, of which 2 are rare variants (rs368672899 and rs544942090) and 4 (rs4711096, rs4712959, rs4712960 and rs4712961) are single nucleotide polymorphisms. Minor allele frequency of 5'-untranslated region variant rs4711096 was significantly lower in infertile men (OR = 0.65). The rare nonsynonymous variant, rs368672899, p.Ser5Pro was seen in 1 oligoasthenoteratozoospermic individual. Interestingly, mass spectrometric analysis identified a site on TSH2B to bear a phosphate group in the sperm of fertile men. CONCLUSION(S): Our study reveals a defect in the replacement of somatic histones with testis-specific variants in infertile men. Chromatin compaction positively correlates with sperm motility, which is suggestive of its utility in diagnostic semen analysis of infertile individuals. Our observations with TSH2B and its cognate gene in sperm of infertile men indicate an essential role for TSH2B in meiosis and its phosphorylation in sperm motility, respectively.


Subject(s)
Infertility, Male , Sperm Motility , Male , Humans , Sperm Motility/genetics , Histones/genetics , Testis/chemistry , Infertility, Male/diagnosis , Chromomycin A3/analysis , Proteomics , Case-Control Studies , Semen/chemistry , Protamines/analysis , Meiosis
15.
Front Genet ; 13: 813934, 2022.
Article in English | MEDLINE | ID: mdl-35571044

ABSTRACT

In 2014, 157 years after the Sepoy Mutiny of 1857, several unidentified human skeletons were discovered in an abandoned well at Ajnala, Punjab. The most prevailing hypothesis suggested them as Indian soldiers who mutinied during the Indian uprising of 1857. However, there is an intense debate on their geographic affinity. Therefore, to pinpoint their area of origin, we have successfully isolated DNA from cementum-rich material of 50 good-quality random teeth samples and analyzed mtDNA haplogroups. In addition to that, we analyzed 85 individuals for oxygen isotopes (δ18O values). The mtDNA haplogroup distribution and clustering pattern rejected the local ancestry and indicated their genetic link with the populations living east of Punjab. In addition, the oxygen isotope analysis (δ18O values) from archaeological skeletal remains corroborated the molecular data and suggested the closest possible geographical affinity of these skeletal remains toward the eastern part of India, largely covering the Gangetic plain region. The data generated from this study are expected to expand our understanding of the ancestry and population affinity of martyr soldiers.

16.
CJC Open ; 4(1): 1-11, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35072022

ABSTRACT

BACKGROUND: Heart failure is a hallmark of severe hypertrophic cardiomyopathy and dilated cardiomyopathy (DCM). Several mutations in the ß-MYH7 gene lead to hypertrophic cardiomyopathy. Recently, causative mutations in the ß-MYH7 gene have also been detected in DCM from different populations. METHODS: Here, we sequenced the ß-MYH7 gene in 137 Indian DCM patients and 167 ethnically matched healthy controls to detect the frequency of mutations and their association. RESULTS: Our study revealed 27 variations, of which 7 mutations (8.0%) were detected exclusively in Indian DCM patients for the first time. These included 4 missense mutations-Arg723His, Phe510Leu, His358Leu, and Ser384Tyr (2.9%); a frameshift mutation-Asn676_T-del (1.5%); and 2 splice-site mutations (IVS17+2T) T>G and (IVS19-1G) G>A (3.6%). Remarkably, all 4 missense mutations altered evolutionarily conserved amino acids. All 4 missense mutations were predicted to be pathogenic by 2 bioinformatics tools-polymorphism phenotyping v2 (PolyPhen-2) and sorting intolerant from tolerant (SIFT). In addition, the 4 homology models of ß-MYH7-p.Leu358, p.Tyr384, p.Leu510, and p.His723-displayed root-mean-square deviations of ∼2.55 Å, ∼1.24 Å, ∼3.36 Å, and ∼3.86 Å, respectively. CONCLUSIONS: In the present study, we detected numerous novel, unique, and rare mutations in the ß-MYH7 gene exclusively in Indian DCM patients (8.0%). Here, we demonstrated how each mutant (missense) uniquely disrupts a critical network of non-bonding interactions at the mutation site (molecular level) and may contribute to development of dilated cardiomyopathy (DCM). Therefore, our findings may provide insight into the understanding of the molecular bases of disease and into diagnosis along with promoting novel therapeutic strategies (through personalized medicine).


INTRODUCTION: L'insuffisance cardiaque est une caractéristique de la cardiomyopathie hypertrophique grave et de la cardiomyopathie dilatée (CMD). Plusieurs mutations dans le gène ß-MYH7 conduisent à la cardiomyopathie hypertrophique. Récemment, les mutations causales dans le gène ß-MYH7 ont également été détectées au sein de différentes populations atteintes de CMD. MÉTHODES: Ici, nous avons séquencé le gène ß-MYH7 de 137 patients indiens atteints de CMD et de 167 témoins sains appariés selon l'origine ethnique pour détecter la fréquence des mutations et leur association. RÉSULTATS: L'étude nous a permis de révéler 27 variations, dont sept mutations (8,0 %) étaient exclusivement détectées chez les patients indiens atteints de CMD pour la première fois. Parmi ces mutations, nous avons observé quatre mutations faux-sens­Arg723His, Phe510Leu, His358Leu et Ser384Tyr (2,9 %), une mutation par déphasage­Asn676_T-del (1,5 %) et deux mutations des sites d'épissage (IVS17+2T) T>G et (IVS19-1G) G>A (3,6 %). Étonnamment, les quatre mutations faux-sens changeaient les acides aminés évolutivement conservés. Selon deux outils bioinformatiques­PolyPhen-2 (de l'anglais, polymorphism phenotyping v2) et SIFT (de l'anglais, sorting intolerant from tolerant), les quatre mutations faux-sens devaient être pathogènes. De plus, les quatre modélisations de ß-MYH7 par homologie­p.Leu358, p.Tyr384, p.Leu510 et p.His723­affichaient de façon respective des écarts quadratiques moyens de ∼2,55 Å, ∼1,24 Å, ∼3,36 Å et ∼3,86 Å. CONCLUSIONS: Dans la présente étude, nous avons détecté de nombreuses nouvelles mutations, uniques et rares, dans le gène ß-MYH7, exclusivement chez les patients indiens atteints de CMD (8,0 %). Ici, nous avons démontré comment chaque mutant (faux-sens) perturbe de manière unique un réseau essentiel d'interactions non liantes au site de mutation (moléculaire) et peut contribuer à la survenue de la CMD. Par conséquent, les conclusions de notre étude peuvent donner un aperçu des bases moléculaires de la maladie et du diagnostic tout en favorisant la promotion de nouvelles stratégies thérapeutiques (par la médecine personnalisée).

17.
Genes Immun ; 23(1): 47-50, 2022 02.
Article in English | MEDLINE | ID: mdl-34635809

ABSTRACT

The rapid expansion of coronavirus SARS-CoV-2 has impacted various ethnic groups all over the world. The burden of infectious diseases including COVID-19 are generally reported to be higher for the Indigenous people. The historical knowledge have also suggested that the indigenous populations suffer more than the general populations in the pandemic. Recently, it has been reported that the indigenous groups of Brazil have been massively affected by COVID-19. Series of studies have shown that many of the indigenous communities reached at the verge of extinction due to this pandemic. Importantly, South Asia also has several indigenous and smaller communities, that are living in isolation. Till date, despite the two consecutive waves in India, there is no report on the impact of COVID-19 for indigenous tribes. Since smaller populations experiencing drift may have greater risk of such pandemic, we have analysed Runs of Homozygosity (ROH) among South Asian populations and identified several populations with longer homozygous segments. The longer runs of homozygosity at certain genomic regions may increases the susceptibility for COVID-19. Thus, we suggest extreme careful management of this pandemic among isolated populations of South Asia.


Subject(s)
COVID-19 , Humans , India , Linguistics , Pandemics , SARS-CoV-2
18.
J Med Genet ; 59(10): 984-992, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34916228

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease with preserved or increased ejection fraction in the absence of secondary causes. Mutations in the sarcomeric protein-encoding genes predominantly cause HCM. However, relatively little is known about the genetic impact of signalling proteins on HCM. METHODS AND RESULTS: Here, using exome and targeted sequencing methods, we analysed two independent cohorts comprising 401 Indian patients with HCM and 3521 Indian controls. We identified novel variants in ribosomal protein S6 kinase beta-1 (RPS6KB1 or S6K1) gene in two unrelated Indian families as a potential candidate gene for HCM. The two unrelated HCM families had the same heterozygous missense S6K1 variant (p.G47W). In a replication association study, we identified two S6K1 heterozygotes variants (p.Q49K and p.Y62H) in the UK Biobank cardiomyopathy cohort (n=190) compared with matched controls (n=16 479). These variants are neither detected in region-specific controls nor in the human population genome data. Additionally, we observed an S6K1 variant (p.P445S) in an Arab patient with HCM. Functional consequences were evaluated using representative S6K1 mutated proteins compared with wild type in cellular models. The mutated proteins activated the S6K1 and hyperphosphorylated the rpS6 and ERK1/2 signalling cascades, suggesting a gain-of-function effect. CONCLUSIONS: Our study demonstrates for the first time that the variants in the S6K1 gene are associated with HCM, and early detection of the S6K1 variant carriers can help to identify family members at risk and subsequent preventive measures. Further screening in patients with HCM with different ethnic populations will establish the specificity and frequency of S6K1 gene variants.


Subject(s)
Cardiomyopathy, Hypertrophic , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Cardiomyopathies/genetics , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Exome , Heterozygote , Humans , Mutation , Ribosomal Protein S6 Kinases/genetics
19.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34840149

ABSTRACT

After the completion of the Human Genome Project in 2003, the field of genetics has witnessed massive progress that spanned research in high-altitude biology also. Especially the decade of 2010s witnessed the most of it and revealed various genetic signatures of high-altitude adaptation in Tibetans, Andeans and Ethiopians. High-altitude area, with its extreme environment, harbors a tremendous potential for gene-environment interaction, an aspect that could be explored by epigenetic studies. There are only four original articles till now which explore the epigenetic aspect of high-altitude adaptation or acclimatization. However, there is no comprehensive review to provide complete information on the genetic and epigenetic aspects of high-altitude adaptations. Hence, we have prepared this mini-review to summarize the genetic and epigenetic studies that have correlated the high-altitude adaptation or acclimatization, until recently.


Subject(s)
Altitude , Polymorphism, Single Nucleotide , Acclimatization/genetics , Adaptation, Physiological/genetics , Epigenesis, Genetic , Humans
20.
DNA Cell Biol ; 40(10): 1338-1348, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34529517

ABSTRACT

Ficolins are pattern recognition molecules that are involved in innate immune defense. Ficonin-2 (FCN2) has a specific affinity for lipoteichoic acid present in the cell wall of Streptococcus pyogenes, an etiological agent for rheumatic heart disease (RHD). We have estimated FCN2 serum levels and analyzed the functional variants of FCN2 in 400 RHD patients, 617 healthy controls, and 581 individuals belonged to various ethnic populations, who are inhabited in various geographical regions of India. Our study revealed that the FCN2 -986A and +6359T alleles were the risk factors for RHD susceptibility (p = 0.0007 for -986G>A; p = 0.0004 for +6359C>T). The haplotype AGGT (p = 0.0024) was observed to be a risk factor for RHD susceptibility, and the haplotype GGAC (p = 0.002) was found to confer protection against RHD. The level of serum FCN2 was significantly higher in controls (p < 0.0001) and in controls with GGAC haplotypes (p < 0.0001). The frequency of the risk alleles -986A and +6359T was found to be more prevalent in Northern and North-Western (Indo-European) India. The protective GGAC haplotype was found more prevalent in Eastern (Tibeto-Burman) and South-Western (Dravidian) India. Alleles -986A and +6359T were in positive correlation with the prevalence of RHD (regression coefficient = 1.84 and 1.94, respectively), whereas GGAC haplotype was in negative correlation with prevalence of RHD (regression coefficient = -1.71). In conclusion, we found that low level of serum ficolin-2 is significantly associated with RHD. Further, FCN2 -986A and +6359T alleles and AGGT haplotype are associated with increased susceptibility to RHD, while GGAC haplotype is associated with moderate protection against RHD.


Subject(s)
Lectins/genetics , Polymorphism, Single Nucleotide , Rheumatic Heart Disease/genetics , Adult , Aged , Female , Haplotypes , Humans , India , Male , Middle Aged , Ficolins
SELECTION OF CITATIONS
SEARCH DETAIL
...