Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739115

ABSTRACT

Aeromonas spp. are commonly found in the aquatic environment and have been responsible for motile Aeromonas septicemia (MAS) in striped catfish, resulting in significant economic loss. These organisms also cause a range of opportunistic infections in humans with compromised immune systems. Here, we conducted a genomic investigation of 87 Aeromonas isolates derived from diseased catfish, healthy catfish and environmental water in catfish farms affected by MAS outbreaks in eight provinces in Mekong Delta (years: 2012-2022), together with 25 isolates from humans with bloodstream infections (years: 2010-2020). Genomics-based typing method precisely delineated Aeromonas species while traditional methods such as aerA PCR and MALDI-TOF were unable identify A. dhakensis. A. dhakensis was found to be more prevalent than A. hydrophila in both diseased catfish and human infections. A. dhakensis sequence type (ST) 656 followed by A. hydrophila ST251 were the predominant virulent species-lineages in diseased catfish (43.7 and 20.7 %, respectively), while diverse STs were found in humans with bloodstream infections. There was evidence of widespread transmission of ST656 and ST251 on striped catfish in the Mekong Delta region. ST656 and ST251 isolates carried a significantly higher number of acquired antimicrobial resistance (AMR) genes and virulence factors in comparison to other STs. They, however, exhibited several distinctions in key virulence factors (i.e. lack of type IV pili and enterotoxin ast in A. dhakensis), AMR genes (i.e. presence of imiH carbapenemase in A. dhakensis), and accessory gene content. To uncover potential conserved proteins of Aeromonas spp. for vaccine development, pangenome analysis has unveiled 2202 core genes between ST656 and ST251, of which 78 proteins were in either outer membrane or extracellular proteins. Our study represents one of the first genomic investigations of the species distribution, genetic landscape, and epidemiology of Aeromonas in diseased catfish and human infections in Vietnam. The emergence of antimicrobial resistant and virulent A. dhakensis strains underscores the needs of enhanced genomic surveillance and strengthening vaccine research and development in preventing Aeromonas diseases in catfish and humans, and the search for potential vaccine candidates could focus on Aeromonas core genes encoded for membrane and secreted proteins.


Subject(s)
Aeromonas , Catfishes , Fish Diseases , Gram-Negative Bacterial Infections , Sepsis , Animals , Catfishes/microbiology , Vietnam/epidemiology , Aeromonas/genetics , Aeromonas/isolation & purification , Aeromonas/classification , Aeromonas/pathogenicity , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/epidemiology , Humans , Sepsis/microbiology , Sepsis/veterinary , Sepsis/epidemiology , Fish Diseases/microbiology , Phylogeny , Genomics , Genome, Bacterial , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology
2.
Antibiotics (Basel) ; 12(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37370273

ABSTRACT

Linezolid is an antibiotic of last resort for the treatment of infections caused by Gram-positive bacteria, including vancomycin-resistant enterococci. Enterococcus faecalis, a member of enterococci, is a significant pathogen in nosocomial infections. E. faecalis resistance to linezolid is frequently related to the presence of optrA, which is often co-carried with fex, phenicol exporter genes, and erm genes encoding macrolide resistance. Therefore, the common use of antibiotics in veterinary might promote the occurrence of optrA in livestock settings. This is a cross-sectional study aiming to investigate the prevalence of optrA positive E. faecalis (OPEfs) in 6 reservoirs in farms in Ha Nam province, Vietnam, and its associated factors and to explore genetic relationships of OPEfs isolates. Among 639 collected samples, the prevalence of OPEfs was highest in flies, 46.8% (51/109), followed by chickens 37.3% (72/193), dogs 33.3% (17/51), humans 18.7% (26/139), wastewater 16.4% (11/67) and pigs 11.3%, (14/80). The total feeding area and total livestock unit of the farm were associated with the presence of OPEfs in chickens, flies, and wastewater. Among 186 OPEfs strains, 86% were resistant to linezolid. The presence of optrA was also related to the resistant phenotype against linezolid and levofloxacin of E. faecalis isolates. Close genotypic relationships identified by Pulsed Field Gel Electrophoresis between OPEfs isolates recovered from flies and other reservoirs including chickens, pigs, dogs, and wastewater suggested the role of flies in the transmission of antibiotic-resistant pathogens. These results provided warnings of linezolid resistance although it is not used in livestock.

3.
PLoS Negl Trop Dis ; 15(9): e0009755, 2021 09.
Article in English | MEDLINE | ID: mdl-34529660

ABSTRACT

Little is known about the genetic diversity of Salmonella enterica serovar Typhi (S. Typhi) circulating in Latin America. It has been observed that typhoid fever is still endemic in this part of the world; however, a lack of standardized blood culture surveillance across Latin American makes estimating the true disease burden problematic. The Colombian National Health Service established a surveillance system for tracking bacterial pathogens, including S. Typhi, in 2006. Here, we characterized 77 representative Colombian S. Typhi isolates collected between 1997 and 2018 using pulse field gel electrophoresis (PFGE; the accepted genotyping method in Latin America) and whole genome sequencing (WGS). We found that the main S. Typhi clades circulating in Colombia were clades 2.5 and 3.5. Notably, the sequenced S. Typhi isolates from Colombia were closely related in a global phylogeny. Consequently, these data suggest that these are endemic clades circulating in Colombia. We found that AMR in S. Typhi in Colombia was uncommon, with a small subset of organisms exhibiting mutations associated with reduced susceptibility to fluoroquinolones. This is the first time that S. Typhi isolated from Colombia have been characterized by WGS, and after comparing these data with those generated using PFGE, we conclude that PFGE is unsuitable for tracking S. Typhi clones and mapping transmission. The genetic diversity of pathogens such as S. Typhi is limited in Latin America and should be targeted for future surveillance studies incorporating WGS.


Subject(s)
Salmonella typhi/genetics , Typhoid Fever/epidemiology , Typhoid Fever/microbiology , Anti-Bacterial Agents/pharmacology , Colombia/epidemiology , Drug Resistance, Bacterial/genetics , Population Surveillance , Salmonella typhi/drug effects
4.
J Antimicrob Chemother ; 76(10): 2606-2609, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34179968

ABSTRACT

BACKGROUND: The clinical response to ceftriaxone in patients with typhoid fever is significantly slower than with ofloxacin, despite infection with Salmonella enterica serovar Typhi (S. Typhi) isolates with similar susceptibilities (MIC 0.03-0.12 mg/L). The response to ofloxacin is slower if the isolate has intermediate susceptibility (MIC 0.25-1.0 mg/L). OBJECTIVES: To determine the bactericidal activity and post-antibiotic effect (PAE) of ceftriaxone and ofloxacin against S. Typhi. METHODS: The mean time to reach a 99.9% reduction in log10 count (bactericidal activity) and PAE of ceftriaxone and ofloxacin were determined for 18 clinical isolates of S. Typhi in time-kill experiments (MIC range for ofloxacin 0.06-1.0 mg/L and for ceftriaxone 0.03-0.12 mg/L). RESULTS: The mean (SD) bactericidal activity of ofloxacin was 33.1 (15.2) min and 384.4 (60) min for ceftriaxone. After a 30 min exposure to ofloxacin, the mean (SD) duration of PAE was 154.7 (52.6) min. There was no detectable PAE after 1 h of exposure to ceftriaxone. For ofloxacin, bactericidal activity and PAE did not significantly differ between isolates with full or intermediate susceptibility provided ofloxacin concentrations were maintained at 4×MIC. CONCLUSIONS: Infections with S. Typhi with intermediate ofloxacin susceptibility may respond to doses that maintain ofloxacin concentrations at 4×MIC at the site of infection. The slow bactericidal activity of ceftriaxone and absent PAE may explain the slow clinical response in typhoid.


Subject(s)
Pharmaceutical Preparations , Salmonella typhi , Anti-Bacterial Agents/pharmacology , Ceftriaxone/pharmacology , Humans , Microbial Sensitivity Tests , Ofloxacin/pharmacology
5.
Wellcome Open Res ; 6: 207, 2021.
Article in English | MEDLINE | ID: mdl-35097222

ABSTRACT

Background: Typhoid and paratyphoid fever (enteric fever) is a common cause of non-specific febrile infection in adults and children presenting to health care facilities in low resource settings such as the South Asia.  A 7-day course of a single oral antimicrobial such as ciprofloxacin, cefixime or azithromycin is commonly used for its treatment. Increasing antimicrobial resistance threatens the effectiveness of these treatment choices. We hypothesize that combined treatment with azithromycin (active mainly intracellularly) and cefixime (active mainly extracellularly) will be a better option for the treatment of typhoid fever in South Asia. Methods: This is a phase IV, international multi-centre, multi-country, comparative participant-and observer-blind, 1:1 randomised clinical trial. Patients with suspected uncomplicated typhoid fever will be randomised to one of the two interventions: Arm A: azithromycin 20mg/kg/day oral dose once daily (maximum 1gm/day) and cefixime 20mg/kg/day oral dose in two divided doses (maximum 400mg bd) for 7 days, Arm B: azithromycin 20mg/kg/day oral dose once daily (max 1gm/day) for 7 days AND cefixime-matched placebo for 7 days. We will recruit 1500 patients across sites in Bangladesh, India, Nepal and Pakistan. We will assess whether treatment outcomes are better with the combination after one week of treatment and at one- and three-months follow-up. Discussion: Combined treatment may limit the emergence of resistance if one of the components is active against resistant sub-populations not covered by the other antimicrobial's activity. If the combined treatment is better than the single antimicrobial treatment, this will be an important result for patients across South Asia and other typhoid endemic areas. Clinicaltrials.gov registration: NCT04349826 (16/04/2020).

6.
Antibiotics (Basel) ; 9(11)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114588

ABSTRACT

Antimicrobial resistance (AMR) has been identified by the World Health Organization (WHO) as one of the ten major threats to global health. Advances in technology, including whole-genome sequencing, have provided new insights into the origin and mechanisms of AMR. However, our understanding of the short-term impact of antimicrobial pressure and resistance on the physiology of bacterial populations is limited. We aimed to investigate morphological and physiological responses of clinical isolates of E. coli under short-term exposure to key antimicrobials. We performed whole-genome sequencing on twenty-seven E. coli isolates isolated from children with sepsis to evaluate their AMR gene content. We assessed their antimicrobial susceptibility profile and measured their growth dynamics and morphological characteristics under exposure to varying concentrations of ciprofloxacin, ceftriaxone, tetracycline, gentamicin, and azithromycin. AMR was common, with all organisms resistant to at least one antimicrobial; a total of 81.5% were multi-drug-resistant (MDR). We observed an association between resistance profile and morphological characteristics of the E. coli over a three-hour exposure to antimicrobials. Growth dynamics experiments demonstrated that resistance to tetracycline promoted the growth of E. coli under antimicrobial-free conditions, while resistance to the other antimicrobials incurred a fitness cost. Notably, antimicrobial exposure heterogeneously suppressed bacterial growth, but sub-MIC concentrations of azithromycin increased the maximum growth rate of the clinical isolates. Our results outline complex interactions between organism and antimicrobials and raise clinical concerns regarding exposure of sub-MIC concentrations of specific antimicrobials.

7.
PLoS Pathog ; 16(10): e1008998, 2020 10.
Article in English | MEDLINE | ID: mdl-33085725

ABSTRACT

Despite recent advances in typhoid fever control, asymptomatic carriage of Salmonella Typhi in the gallbladder remains poorly understood. Aiming to understand if S. Typhi becomes genetically adapted for long-term colonisation in the gallbladder, we performed whole genome sequencing on a collection of S. Typhi isolated from the gallbladders of typhoid carriers. These sequences were compared to contemporaneously sampled sequences from organisms isolated from the blood of acute patients within the same population. We found that S. Typhi carriage was not restricted to any particular genotype or conformation of antimicrobial resistance genes, but was largely reflective of S. Typhi circulating in the general population. However, gallbladder isolates showed a higher genetic variability than acute isolates, with median pairwise SNP distances of 21 and 13 SNPs (p = 2.8x10-9), respectively. Within gallbladder isolates of the predominant H58 genotype, variation was associated with a higher prevalence of nonsense mutations. Notably, gallbladder isolates displayed a higher frequency of non-synonymous mutations in genes encoding hypothetical proteins, membrane lipoproteins, transport/binding proteins, surface antigens, and carbohydrate degradation. Specifically, we identified several gallbladder-specific non-synonymous mutations involved in LPS synthesis and modification, with some isolates lacking the Vi capsular polysaccharide vaccine target due to the 134Kb deletion of SPI-7. S. Typhi is under strong selective pressure in the human gallbladder, which may be reflected phylogenetically by long terminal branches that may distinguish organisms from chronic and acute infections. Our work shows that selective pressures asserted by the hostile environment of the human gallbladder generate new antigenic variants and raises questions regarding the role of carriage in the epidemiology of typhoid fever.


Subject(s)
Gallbladder/microbiology , Salmonella typhi/genetics , Typhoid Fever/genetics , Adaptation, Biological , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Female , Genetic Variation/genetics , Genotype , Humans , Male , Middle Aged , Mutation , Phylogeny , Salmonella typhi/pathogenicity , Typhoid Fever/microbiology , Whole Genome Sequencing/methods
8.
PLoS Negl Trop Dis ; 14(3): e0008040, 2020 03.
Article in English | MEDLINE | ID: mdl-32155148

ABSTRACT

Salmonella Typhi (S. Typhi) is the causative agent of typhoid fever; a systemic disease affecting ~20 million people per year globally. There are little data regarding the contemporary epidemiology of typhoid in Latin America. Consequently, we aimed to describe some recent epidemiological aspects of typhoid in Colombia using cases reported to the National Public Health Surveillance System (Sivigila) between 2012 and 2015. Over the four-year reporting period there were 836 culture confirmed cases of typhoid in Colombia, with the majority (676/836; 80.1%) of reported cases originated from only seven departments. We further characterized 402 S. Typhi isolates with available corresponding data recovered from various departments of Colombia through antimicrobial susceptibility testing and molecular subtyping. The majority (235/402; 58.5%) of these typhoid cases occurred in males and were most commonly reported in those aged between 10 and 29 years (218/402; 54.2%); there were three (0.74%) reported fatalities. The overwhelming preponderance (339/402; 84.3%) of S. Typhi were susceptible to all tested antimicrobials. The most common antimicrobial to which the organisms exhibited non-susceptibility was ampicillin (30/402;7.5%), followed by nalidixic acid (23/402, 5.7%). Molecular subtyping identified substantial genetic diversity, which was well distributed across the country. Despite the diffuse pattern of S. Typhi genotypes, we identified various geographical hotspots of disease associated with local dominant genotypes. Notably, we found limited overlap of Colombian genotypes with organisms reported in other Latin American countries. Our work highlights a substantial burden of typhoid in Colombia, characterized by sustained transmission in some regions and limited epidemics in other departments. The disease is widely distributed across the country and associated with multiple antimicrobial susceptible genotypes that appear to be restricted to Colombia. This study provides a current perspective for typhoid in Latin America and highlights the importance of pathogen-specific surveillance to add insight into the limited epidemiology of typhoid in this region.


Subject(s)
Salmonella typhi/isolation & purification , Typhoid Fever/epidemiology , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Child , Child, Preschool , Colombia/epidemiology , Drug Resistance, Bacterial , Epidemiological Monitoring , Female , Genetic Variation , Genotype , Humans , Infant , Male , Microbial Sensitivity Tests , Middle Aged , Molecular Typing , Retrospective Studies , Salmonella typhi/classification , Salmonella typhi/drug effects , Salmonella typhi/genetics , Sex Distribution , Young Adult
9.
Nat Microbiol ; 5(2): 256-264, 2020 02.
Article in English | MEDLINE | ID: mdl-31959970

ABSTRACT

Despite the sporadic detection of fluoroquinolone-resistant Shigella in Asia in the early 2000s and the subsequent global spread of ciprofloxacin-resistant (cipR) Shigella sonnei from 2010, fluoroquinolones remain the recommended therapy for shigellosis1-7. The potential for cipR S. sonnei to develop resistance to alternative second-line drugs may further limit future treatment options8. Here, we aim to understand the evolution of novel antimicrobial resistant (AMR) S. sonnei variants after introduction into Vietnam. We found that cipR S. sonnei displaced the resident ciprofloxacin-susceptible (cipS) lineage while rapidly acquiring additional resistance to multiple alternative antimicrobial classes. We identified several independent acquisitions of extensively drug-resistant/multidrug-resistant-inducing plasmids, probably facilitated by horizontal transfer from commensals in the human gut. By characterizing commensal Escherichia coli from Shigella-infected and healthy children, we identified an extensive array of AMR genes and plasmids, including an identical multidrug-resistant plasmid isolated from both S. sonnei and E. coli in the gut of a single child. We additionally found that antimicrobial usage may impact plasmid transfer between commensal E. coli and S. sonnei. These results suggest that, in a setting with high antimicrobial use and a high prevalence of AMR commensals, cipR S. sonnei may be propelled towards pan-resistance by adherence to outdated international treatment guidelines.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Fluoroquinolones/pharmacology , R Factors/genetics , Shigella sonnei/drug effects , Shigella sonnei/genetics , Child , Ciprofloxacin/pharmacology , Digestive System/microbiology , Disease Reservoirs/microbiology , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/microbiology , Epidemics , Escherichia coli/isolation & purification , Genes, Bacterial , Humans , Phylogeny , Shigella sonnei/classification , Symbiosis/genetics , Vietnam/epidemiology
10.
Microb Genom ; 5(7)2019 07.
Article in English | MEDLINE | ID: mdl-31166889

ABSTRACT

Salmonellaenterica serovar Kentucky is an emergent human pathogen. Human infection with ciprofloxacin-resistant S. enterica Kentucky ST198 has been reported in Europe and North America as a consequence of travel to Asia/the Middle East. This is, to the best of our knowledge, the first study reporting the identification of this epidemic clone in India and South Asia.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Animals , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/therapeutic use , DNA, Bacterial/genetics , Humans , India/epidemiology , Phylogeny , Salmonella Infections, Animal/drug therapy , Salmonella enterica/classification , Salmonella enterica/genetics , Serogroup , Whole Genome Sequencing
11.
Microb Genom ; 5(2)2019 02.
Article in English | MEDLINE | ID: mdl-30720421

ABSTRACT

The increasing incidence and emergence of multi-drug resistant (MDR) Acinetobacter baumannii has become a major global health concern. Colistin is a historic antimicrobial that has become commonly used as a treatment for MDR A. baumannii infections. The increase in colistin usage has been mirrored by an increase in colistin resistance. We aimed to identify the mechanisms associated with colistin resistance in A. baumannii using multiple high-throughput-sequencing technologies, including transposon-directed insertion site sequencing (TraDIS), RNA sequencing (RNAseq) and whole-genome sequencing (WGS) to investigate the genotypic changes of colistin resistance in A. baumannii. Using TraDIS, we found that genes involved in drug efflux (adeIJK), and phospholipid (mlaC, mlaF and mlaD) and lipooligosaccharide synthesis (lpxC and lpsO) were required for survival in sub-inhibitory concentrations of colistin. Transcriptomic (RNAseq) analysis revealed that expression of genes encoding efflux proteins (adeI, adeC, emrB, mexB and macAB) was enhanced in in vitro generated colistin-resistant strains. WGS of these organisms identified disruptions in genes involved in lipid A (lpxC) and phospholipid synthesis (mlaA), and in the baeS/R two-component system (TCS). We additionally found that mutations in the pmrB TCS genes were the primary colistin-resistance-associated mechanisms in three Vietnamese clinical colistin-resistant A. baumannii strains. Our results outline the entire range of mechanisms employed in A. baumannii for resistance against colistin, including drug extrusion and the loss of lipid A moieties by gene disruption or modification.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/therapeutic use , Colistin/therapeutic use , High-Throughput Nucleotide Sequencing/methods , Lipid A/genetics , Mutation , Phospholipids/genetics , Vietnam
12.
mBio ; 9(5)2018 09 04.
Article in English | MEDLINE | ID: mdl-30181247

ABSTRACT

Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovar Typhimurium, is among the leading etiologic agents of bacterial enterocolitis globally and a well-characterized cause of invasive disease (iNTS) in sub-Saharan Africa. In contrast, S Typhimurium is poorly defined in Southeast Asia, a known hot spot for zoonotic disease with a recently described burden of iNTS disease. Here, we aimed to add insight into the epidemiology and potential impact of zoonotic transfer and antimicrobial resistance (AMR) in S Typhimurium associated with iNTS and enterocolitis in Vietnam. We performed whole-genome sequencing and phylogenetic reconstruction on 85 human (enterocolitis, carriage, and iNTS) and 113 animal S Typhimurium isolates isolated in Vietnam. We found limited evidence for the zoonotic transmission of S Typhimurium. However, we describe a chain of events where a pandemic monophasic variant of S Typhimurium (serovar I:4,[5],12:i:- sequence type 34 [ST34]) has been introduced into Vietnam, reacquired a phase 2 flagellum, and acquired an IncHI2 multidrug-resistant plasmid. Notably, these novel biphasic ST34 S Typhimurium variants were significantly associated with iNTS in Vietnamese HIV-infected patients. Our study represents the first characterization of novel iNTS organisms isolated outside sub-Saharan Africa and outlines a new pathway for the emergence of alternative Salmonella variants into susceptible human populations.IMPORTANCESalmonella Typhimurium is a major diarrheal pathogen and associated with invasive nontyphoid Salmonella (iNTS) disease in vulnerable populations. We present the first characterization of iNTS organisms in Southeast Asia and describe a different evolutionary trajectory from that of organisms causing iNTS in sub-Saharan Africa. In Vietnam, the globally distributed monophasic variant of Salmonella Typhimurium, the serovar I:4,[5],12:i:- ST34 clone, has reacquired a phase 2 flagellum and gained a multidrug-resistant plasmid to become associated with iNTS disease in HIV-infected patients. We document distinct communities of S Typhimurium and I:4,[5],12:i:- in animals and humans in Vietnam, despite the greater mixing of these host populations here. These data highlight the importance of whole-genome sequencing surveillance in a One Health context in understanding the evolution and spread of resistant bacterial infections.


Subject(s)
Drug Resistance, Multiple, Bacterial , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella typhimurium/classification , Salmonella typhimurium/drug effects , Animals , Bacteremia/epidemiology , Bacteremia/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Chickens , Disease Transmission, Infectious , Ducks , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Genetic Variation , Genotype , HIV Infections/complications , Humans , Immunocompromised Host , Molecular Epidemiology , Salmonella Infections/transmission , Salmonella Infections, Animal/transmission , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Swine , Vietnam/epidemiology , Whole Genome Sequencing , Zoonoses/epidemiology , Zoonoses/microbiology , Zoonoses/transmission
13.
Article in English | MEDLINE | ID: mdl-29378707

ABSTRACT

Infection by Shigella spp. is a common cause of dysentery in Southeast Asia. Antimicrobials are thought to be beneficial for treatment; however, antimicrobial resistance in Shigella spp. is becoming widespread. We aimed to assess the frequency and mechanisms associated with decreased susceptibility to azithromycin in Southeast Asian Shigella isolates and use these data to assess appropriate susceptibility breakpoints. Shigella isolates recovered in Vietnam and Laos were screened for susceptibility to azithromycin (15 µg) by disc diffusion and MIC. Phenotypic resistance was confirmed by PCR amplification of macrolide resistance loci. We compared the genetic relationships and plasmid contents of azithromycin-resistant Shigella sonnei isolates using whole-genome sequences. From 475 available Shigella spp. isolated in Vietnam and Laos between 1994 and 2012, 6/181 S. flexneri isolates (3.3%, MIC ≥ 16 g/liter) and 16/294 S. sonnei isolates (5.4%, MIC ≥ 32 g/liter) were phenotypically resistant to azithromycin. PCR amplification confirmed a resistance mechanism in 22/475 (4.6%) isolates (mphA in 19 isolates and ermB in 3 isolates). The susceptibility data demonstrated the acceptability of the S. flexneri (MIC ≥ 16 g/liter, zone diameter ≤ 15 mm) and S. sonnei (MIC ≥ 32 g/liter, zone diameter ≤ 11 mm) breakpoints with a <3% discrepancy. Phylogenetic analysis demonstrated that decreased susceptibility has arisen sporadically in Vietnamese S. sonnei isolates on at least seven occasions between 2000 and 2009 but failed to become established. While the proposed susceptibility breakpoints may allow better recognition of resistant isolates, additional studies are required to assess the impact on the clinical outcome. The potential emergence of azithromycin resistance highlights the need for alternative options for management of Shigella infections in countries where Shigella is endemic.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/pharmacology , Shigella/drug effects , Shigella/pathogenicity , Asia, Southeastern , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/prevention & control , Microbial Sensitivity Tests , Phylogeny , Shigella/genetics , Shigella flexneri/drug effects , Shigella flexneri/genetics , Shigella flexneri/pathogenicity , Shigella sonnei/drug effects , Shigella sonnei/genetics , Shigella sonnei/pathogenicity
14.
Article in English | MEDLINE | ID: mdl-29046783

ABSTRACT

BACKGROUND: Broad-spectrum antimicrobials are commonly used as empirical therapy for infections of presumed bacterial origin. Increasing resistance to these antimicrobial agents has prompted the need for alternative therapies and more effective surveillance. Better surveillance leads to more informed and improved delivery of therapeutic interventions, potentially leading to better treatment outcomes. METHODS: We screened 1017 Gram negative bacteria (excluding Pseudomonas spp. and Acinetobacter spp.) isolated between 2011 and 2013 from positive blood cultures for susceptibility against third generation cephalosporins, ESBL and/or AmpC production, and associated ESBL/AmpC genes, at the Hospital for Tropical Diseases in Ho Chi Minh City. RESULTS: Phenotypic screening found that 304/1017 (30%) organisms were resistance to third generation cephalosporins; 172/1017 (16.9%) of isolates exhibited ESBL activity, 6.2% (63/1017) had AmpC activity, and 0.5% (5/1017) had both ESBL and AmpC activity. E. coli and Aeromonas spp. were the most common organisms associated with ESBL and AmpC phenotypes, respectively. Nearly half of the AmpC producers harboured an ESBL gene. There was no significant difference (p > 0.05) between the antimicrobial resistance phenotypes of the organisms associated with community and hospital-acquired infections. CONCLUSION: AmpC and ESBL producing organisms were commonly associated with bloodstream infections in this setting, with antimicrobial resistant organisms being equally distributed between infections originating from the community and healthcare settings. Aeromonas spp., which was associated with bloodstream infections in cirrhotic/hepatitis patients, were the most abundant AmpC producing organism. We conclude that empirical monotherapy with third generation cephalosporins may not be optimum in this setting.

15.
Clin Infect Dis ; 64(8): 1066-1073, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28158395

ABSTRACT

Background: To expedite the evaluation of vaccines against paratyphoid fever, we aimed to develop the first human challenge model of Salmonella enterica serovar Paratyphi A infection. Methods: Two groups of 20 participants underwent oral challenge with S. Paratyphi A following sodium bicarbonate pretreatment at 1 of 2 dose levels (group 1: 1-5 × 103 colony-forming units [CFU] and group 2: 0.5-1 × 103 CFU). Participants were monitored in an outpatient setting with daily clinical review and collection of blood and stool cultures. Antibiotic treatment was started when prespecified diagnostic criteria were met (temperature ≥38°C for ≥12 hours and/or bacteremia) or at day 14 postchallenge. Results: The primary study objective was achieved following challenge with 1-5 × 103 CFU (group 1), which resulted in an attack rate of 12 of 20 (60%). Compared with typhoid challenge, paratyphoid was notable for high rates of subclinical bacteremia (at this dose, 11/20 [55%]). Despite limited symptoms, bacteremia persisted for up to 96 hours after antibiotic treatment (median duration of bacteremia, 53 hours [interquartile range, 24-85 hours]). Shedding of S. Paratyphi A in stool typically preceded onset of bacteremia. Conclusions: Challenge with S. Paratyphi A at a dose of 1-5 × 103 CFU was well tolerated and associated with an acceptable safety profile. The frequency and persistence of bacteremia in the absence of clinical symptoms was notable, and markedly different from that seen in previous typhoid challenge studies. We conclude that the paratyphoid challenge model is suitable for the assessment of vaccine efficacy using endpoints that include bacteremia and/or symptomatology. Clinical Trials Registration: NCT02100397.


Subject(s)
Bacteremia/microbiology , Bacteremia/pathology , Paratyphoid Fever/microbiology , Paratyphoid Fever/pathology , Salmonella paratyphi A/isolation & purification , Adult , Blood/microbiology , Feces/microbiology , Female , Healthy Volunteers , Humans , Male , Middle Aged , Temperature , Time Factors , Young Adult
16.
PLoS Negl Trop Dis ; 11(1): e0005274, 2017 01.
Article in English | MEDLINE | ID: mdl-28060810

ABSTRACT

Vaccines against Salmonella Typhi, the causative agent of typhoid fever, are commonly used by travellers, however, there are few examples of national immunization programs in endemic areas. There is therefore a paucity of data on the impact of typhoid immunization programs on localised populations of S. Typhi. Here we have used whole genome sequencing (WGS) to characterise 44 historical bacterial isolates collected before and after a national typhoid immunization program that was implemented in Thailand in 1977 in response to a large outbreak; the program was highly effective in reducing typhoid case numbers. Thai isolates were highly diverse, including 10 distinct phylogenetic lineages or genotypes. Novel prophage and plasmids were also detected, including examples that were previously only reported in Shigella sonnei and Escherichia coli. The majority of S. Typhi genotypes observed prior to the immunization program were not observed following it. Post-vaccine era isolates were more closely related to S. Typhi isolated from neighbouring countries than to earlier Thai isolates, providing no evidence for the local persistence of endemic S. Typhi following the national immunization program. Rather, later cases of typhoid appeared to be caused by the occasional importation of common genotypes from neighbouring Vietnam, Laos, and Cambodia. These data show the value of WGS in understanding the impacts of vaccination on pathogen populations and provide support for the proposal that large-scale typhoid immunization programs in endemic areas could result in lasting local disease elimination, although larger prospective studies are needed to test this directly.


Subject(s)
Genome, Bacterial , Salmonella typhi/genetics , Typhoid Fever/prevention & control , Genotype , Humans , Immunization Programs , Phylogeny , Plasmids/genetics , Plasmids/metabolism , Salmonella typhi/classification , Salmonella typhi/immunology , Thailand , Typhoid Fever/microbiology , Typhoid-Paratyphoid Vaccines/administration & dosage , Typhoid-Paratyphoid Vaccines/genetics , Typhoid-Paratyphoid Vaccines/immunology
17.
Sci Rep ; 6: 28291, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27329501

ABSTRACT

Acinetobacter baumannii is a significant cause of opportunistic hospital acquired infection and has been identified as an important emerging infection due to its high levels of antimicrobial resistance. Multidrug resistant A. baumannii has risen rapidly in Vietnam, where colistin is becoming the drug of last resort for many infections. In this study we generated spontaneous colistin resistant progeny (up to >256 µg/µl) from four colistin susceptible Vietnamese isolates and one susceptible reference strain (MIC <1.5 µg/µl). Whole genome sequencing was used to identify single nucleotide mutations that could be attributed to the reduced colistin susceptibility. We identified six lpxACD and three pmrB mutations, the majority of which were novel. In addition, we identified further mutations in six A. baumannii genes (vacJ, pldA, ttg2C, pheS and conserved hypothetical protein) that we hypothesise have a role in reduced colistin susceptibility. This study has identified additional mutations that may be associated with colistin resistance through novel resistance mechanisms. Our work further demonstrates how rapidly A. baumannii can generate resistance to a last resort antimicrobial and highlights the need for improved surveillance to identified A. baumannii with an extensive drug resistance profile.


Subject(s)
Acinetobacter baumannii , Bacterial Proteins , Colistin/pharmacology , Drug Resistance, Bacterial , Mutation , Acinetobacter baumannii/genetics , Acinetobacter baumannii/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Humans , Vietnam
18.
Nat Rev Microbiol ; 14(4): 235-50, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26923111

ABSTRACT

Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.


Subject(s)
Adaptation, Physiological/genetics , Escherichia coli/genetics , Evolution, Molecular , Genome, Bacterial , Shigella/genetics , Genomics , Phylogeny , Plasmids/genetics , Sequence Analysis, DNA , Shigella/pathogenicity , Virulence Factors/genetics
19.
Lancet Infect Dis ; 16(5): 535-545, 2016 May.
Article in English | MEDLINE | ID: mdl-26809813

ABSTRACT

BACKGROUND: Because treatment with third-generation cephalosporins is associated with slow clinical improvement and high relapse burden for enteric fever, whereas the fluoroquinolone gatifloxacin is associated with rapid fever clearance and low relapse burden, we postulated that gatifloxacin would be superior to the cephalosporin ceftriaxone in treating enteric fever. METHODS: We did an open-label, randomised, controlled, superiority trial at two hospitals in the Kathmandu valley, Nepal. Eligible participants were children (aged 2-13 years) and adult (aged 14-45 years) with criteria for suspected enteric fever (body temperature ≥38·0°C for ≥4 days without a focus of infection). We randomly assigned eligible patients (1:1) without stratification to 7 days of either oral gatifloxacin (10 mg/kg per day) or intravenous ceftriaxone (60 mg/kg up to 2 g per day for patients aged 2-13 years, or 2 g per day for patients aged ≥14 years). The randomisation list was computer-generated using blocks of four and six. The primary outcome was a composite of treatment failure, defined as the occurrence of at least one of the following: fever clearance time of more than 7 days after treatment initiation; the need for rescue treatment on day 8; microbiological failure (ie, blood cultures positive for Salmonella enterica serotype Typhi, or Paratyphi A, B, or C) on day 8; or relapse or disease-related complications within 28 days of treatment initiation. We did the analyses in the modified intention-to-treat population, and subpopulations with either confirmed blood-culture positivity, or blood-culture negativity. The trial was powered to detect an increase of 20% in the risk of failure. This trial was registered at ClinicalTrials.gov, number NCT01421693, and is now closed. FINDINGS: Between Sept 18, 2011, and July 14, 2014, we screened 725 patients for eligibility. On July 14, 2014, the trial was stopped early by the data safety and monitoring board because S Typhi strains with high-level resistance to ciprofloxacin and gatifloxacin had emerged. At this point, 239 were in the modified intention-to-treat population (120 assigned to gatifloxacin, 119 to ceftriaxone). 18 (15%) patients who received gatifloxacin had treatment failure, compared with 19 (16%) who received ceftriaxone (hazard ratio [HR] 1·04 [95% CI 0·55-1·98]; p=0·91). In the culture-confirmed population, 16 (26%) of 62 patients who received gatifloxacin failed treatment, compared with four (7%) of 54 who received ceftriaxone (HR 0·24 [95% CI 0·08-0·73]; p=0·01). Treatment failure was associated with the emergence of S Typhi exhibiting resistance against fluoroquinolones, requiring the trial to be stopped. By contrast, in patients with a negative blood culture, only two (3%) of 58 who received gatifloxacin failed treatment versus 15 (23%) of 65 who received ceftriaxone (HR 7·50 [95% CI 1·71-32·80]; p=0·01). A similar number of non-serious adverse events occurred in each treatment group, and no serious events were reported. INTERPRETATION: Our results suggest that fluoroquinolones should no longer be used for treatment of enteric fever in Nepal. Additionally, under our study conditions, ceftriaxone was suboptimum in a high proportion of patients with culture-negative enteric fever. Since antimicrobials, specifically fluoroquinolones, are one of the only routinely used control measures for enteric fever, the assessment of novel diagnostics, new treatment options, and use of existing vaccines and development of next-generation vaccines are now a high priority. FUNDING: Wellcome Trust and Li Ka Shing Foundation.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Ceftriaxone/therapeutic use , Fluoroquinolones/therapeutic use , Typhoid Fever/drug therapy , Adolescent , Female , Gatifloxacin , Humans , Male , Nepal , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella typhi/drug effects , Salmonella typhi/isolation & purification , Treatment Failure , Typhoid Fever/blood , Young Adult
20.
J Antimicrob Chemother ; 71(3): 807-15, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26679253

ABSTRACT

OBJECTIVES: We aimed to quantify the impact of fluoroquinolone resistance on the clinical outcome of paediatric shigellosis patients treated with fluoroquinolones in southern Vietnam. Such information is important to inform therapeutic management for infections caused by this increasingly drug-resistant pathogen, responsible for high morbidity and mortality in young children globally. METHODS: Clinical information and bacterial isolates were derived from a randomized controlled trial comparing gatifloxacin with ciprofloxacin for the treatment of paediatric shigellosis. Time-kill experiments were performed to evaluate the impact of MIC on the in vitro growth of Shigella and Cox regression modelling was used to compare clinical outcome between treatments and Shigella species. RESULTS: Shigella flexneri patients treated with gatifloxacin had significantly worse outcomes than those treated with ciprofloxacin. However, the MICs of fluoroquinolones were not significantly associated with poorer outcome. The presence of S83L and A87T mutations in the gyrA gene significantly increased MICs of fluoroquinolones. Finally, elevated MICs and the presence of the qnrS gene allowed Shigella to replicate efficiently in vitro in high concentrations of ciprofloxacin. CONCLUSIONS: We found that below the CLSI breakpoint, there was no association between MIC and clinical outcome in paediatric shigellosis infections. However, S. flexneri patients had worse clinical outcomes when treated with gatifloxacin in this study regardless of MIC. Additionally, Shigella harbouring the qnrS gene are able to replicate efficiently in high concentrations of ciprofloxacin and we hypothesize that such strains possess a competitive advantage against fluoroquinolone-susceptible strains due to enhanced shedding and transmission.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/microbiology , Fluoroquinolones/therapeutic use , Shigella flexneri/drug effects , Shigella sonnei/drug effects , Adolescent , Child , Child, Preschool , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Dysentery, Bacillary/pathology , Female , Humans , Infant , Male , Microbial Sensitivity Tests , Randomized Controlled Trials as Topic , Sequence Analysis, DNA , Shigella flexneri/genetics , Shigella flexneri/isolation & purification , Shigella sonnei/genetics , Shigella sonnei/isolation & purification , Treatment Failure , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...