Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-37790444

ABSTRACT

We previously found that heroin addiction in humans is accompanied by an increase in the number of detected Hcrt neurons and a decrease in their soma size. We now show that the increased number of Hcrt cells visible after morphine treatment is likely the result of increased Hcrt production in neurons having sub-detection levels of the peptides. We find that morphine increases Hcrt projections to the ventral tegmental area (VTA), the level of tyrosine hydroxylase enzyme (TH) and the number of TH positive cells in VTA, with no changes in the adjacent substantia nigra. We find that the dual Hcrt receptor antagonist suvorexant prevents morphine-induced changes in the number and size of Hcrt neurons, microglial activation and morphine anticipatory behavior, but does not diminish morphine analgesia. These findings suggest that combined administration of opiates and suvorexant may be a less addictive way of administering opiates for pain relief in humans.

2.
Sleep ; 46(9)2023 09 08.
Article in English | MEDLINE | ID: mdl-37155728

ABSTRACT

Long-term use of sodium oxybate (SXB), (also called gamma-hydroxybutyrate [GHB]) attenuates the cataplexy and sleepiness of human narcolepsy. We had previously found that chronic opiate usage in humans and long-term opiate administration to mice significantly increased the number of detected hypocretin/orexin (Hcrt) neurons, decreased their size, and increased Hcrt level in the hypothalamus. We also found that opiates significantly decreased cataplexy in human narcoleptics as well as in narcoleptic mice and that cessation of locus coeruleus neuronal activity preceded and was tightly linked to cataplectic attacks in narcoleptic dogs. We tested the hypothesis that SXB produces changes similar to opiates and now report that chronic SXB administration significantly increased the size of Hcrt neurons, the reverse of what we had seen with opiates in humans and mice. Levels of Hcrt in the hypothalamus were nonsignificantly lower, in contrast to the significant increase in hypothalamic Hcrt level after opiates. SXB decreased tyrosine hydroxylase levels in the locus coeruleus, the major descending projection of the hypocretin system, also the reverse of what we saw with opioids. Therefore despite some similar effects on narcoleptic symptomatology, SXB does not produce anatomical changes similar to those elicited by opiates. Analysis of changes in other links in the cataplexy pathway might further illuminate SXB's mechanism of action on narcolepsy.


Subject(s)
Cataplexy , Narcolepsy , Opiate Alkaloids , Sodium Oxybate , Humans , Mice , Animals , Dogs , Orexins/metabolism , Sodium Oxybate/pharmacology , Cataplexy/drug therapy , Cataplexy/metabolism , Locus Coeruleus/metabolism , Narcolepsy/drug therapy , Narcolepsy/metabolism , Neurons/metabolism , Opiate Alkaloids/metabolism
3.
Neuroscience ; 522: 1-10, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37121379

ABSTRACT

Human heroin addicts and mice administered morphine for a 2 week period show a greatly increased number of hypothalamic hypocretin (Hcrt or orexin) producing neurons with a concomitant reduction in Hcrt cell size. Male rats addicted to cocaine similarly show an increased number of detectable Hcrt neurons. These findings led us to hypothesize that humans with alcohol use disorder (AUD) would show similar changes. We now report that humans with AUD have a decreased number and size of detectable Hcrt neurons. In addition, the intermingled melanin concentrating hormone (MCH) neurons are reduced in size. We saw no change in the size and number of tuberomammillary histamine neurons in AUD. Within the Hcrt/MCH neuronal field we found that microglia cell size was increased in AUD brains. In contrast, male rats with 2 week alcohol exposure, sufficient to elicit withdrawal symptoms, show no change in the number or size of Hcrt, MCH and histamine neurons, and no change in the size of microglia. The present study indicates major differences between the response of Hcrt neurons to opioids and that to alcohol in human subjects with a history of substance abuse.


Subject(s)
Hypothalamic Hormones , Neuropeptides , Humans , Male , Rats , Mice , Animals , Orexins/metabolism , Neuropeptides/metabolism , Histamine , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Melanins , Neurons/metabolism , Ethanol
4.
Anat Rec (Hoboken) ; 305(6): 1459-1475, 2022 06.
Article in English | MEDLINE | ID: mdl-34535040

ABSTRACT

Employing orexin-A immunohistochemical staining we describe the nuclear parcellation of orexinergic neurons in the hypothalami of a lar gibbon and a chimpanzee. The clustering of orexinergic neurons within the hypothalamus and the terminal networks follow the patterns generally observed in other mammals, including laboratory rodents, strepsirrhine primates and humans. The orexinergic neurons were found within three distinct clusters in the ape hypothalamus, which include the main cluster, zona incerta cluster and optic tract cluster. In addition, the orexinergic neurons of the optic tract cluster appear to extend to a more rostral and medial location than observed in other species, being observed in the tuberal region in the anterior ventromedial aspect of the hypothalamus. While orexinergic terminal networks were observed throughout the brain, high density terminal networks were observed within the hypothalamus, medial and intralaminar nuclei of the dorsal thalamus, and within the serotonergic and noradrenergic regions of the midbrain and pons, which is typical for mammals. The expanded distribution of orexinergic neurons into the tuberal region of the ape hypothalamus, is a feature that needs to be investigated in other primate species, but appears to correlate with orexin gene expression in the same region of the human hypothalamus, but these neurons are not revealed with immunohistochemical staining in humans. Thus, it appears that apes have a broader distribution of orexinergic neurons compared to other primate species, but that the neurons within this extension of the optic tract cluster in humans, while expressing the orexin gene, do not produce the neuropeptide.


Subject(s)
Hypothalamus , Pan troglodytes , Animals , Hylobates , Hypothalamus/metabolism , Mammals , Neurons/metabolism , Orexins/metabolism
5.
Handb Clin Neurol ; 180: 359-374, 2021.
Article in English | MEDLINE | ID: mdl-34225941

ABSTRACT

The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demonstrated that these neurons were not simply linked to waking. Rather these neurons were active during pleasurable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice, rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities and decreased release, to the levels seen in sleep, during pain. We found that human heroin addicts have, on average, an increase of 54% in the number of detectable Hcrt neurons compared to "control" human brains and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice, chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in the mouse allowed us to determine the specificity, dose response relations, time course of the change in the number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neurogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in which the peptide has been eliminated are resistant to addiction. These findings are consistent with the concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use disorders.


Subject(s)
Narcolepsy , Pleasure , Animals , Cats , Dogs , Humans , Hypothalamus/metabolism , Mice , Neurons/metabolism , Orexins/metabolism , Rats
6.
Sci Transl Med ; 10(447)2018 06 27.
Article in English | MEDLINE | ID: mdl-29950444

ABSTRACT

The changes in brain function that perpetuate opiate addiction are unclear. In our studies of human narcolepsy, a disease caused by loss of immunohistochemically detected hypocretin (orexin) neurons, we encountered a control brain (from an apparently neurologically normal individual) with 50% more hypocretin neurons than other control human brains that we had studied. We discovered that this individual was a heroin addict. Studying five postmortem brains from heroin addicts, we report that the brain tissue had, on average, 54% more immunohistochemically detected neurons producing hypocretin than did control brains from neurologically normal subjects. Similar increases in hypocretin-producing cells could be induced in wild-type mice by long-term (but not short-term) administration of morphine. The increased number of detected hypocretin neurons was not due to neurogenesis and outlasted morphine administration by several weeks. The number of neurons containing melanin-concentrating hormone, which are in the same hypothalamic region as hypocretin-producing cells, did not change in response to morphine administration. Morphine administration restored the population of detected hypocretin cells to normal numbers in transgenic mice in which these neurons had been partially depleted. Morphine administration also decreased cataplexy in mice made narcoleptic by the depletion of hypocretin neurons. These findings suggest that opiate agonists may have a role in the treatment of narcolepsy, a disorder caused by hypocretin neuron loss, and that increased numbers of hypocretin-producing cells may play a role in maintaining opiate addiction.


Subject(s)
Brain/metabolism , Cataplexy/drug therapy , Narcolepsy/drug therapy , Opiate Alkaloids/therapeutic use , Orexins/biosynthesis , Animals , Brain/pathology , Cataplexy/complications , Cell Count , Disease Models, Animal , Dose-Response Relationship, Drug , Heroin , Humans , Male , Mice, Inbred C57BL , Morphine/administration & dosage , Morphine/pharmacology , Morphine/therapeutic use , Narcolepsy/complications , Neurogenesis/drug effects , Neurons/drug effects , Neurons/metabolism , Opiate Alkaloids/pharmacology , Rats, Sprague-Dawley , Substance-Related Disorders/metabolism , Substance-Related Disorders/pathology
7.
Ann Neurol ; 74(6): 786-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23821583

ABSTRACT

OBJECTIVE: To determine whether histamine cells are altered in human narcolepsy with cataplexy and in animal models of this disease. METHODS: Immunohistochemistry for histidine decarboxylase (HDC) and quantitative microscopy were used to detect histamine cells in human narcoleptics, hypocretin (Hcrt) receptor-2 mutant dogs, and 3 mouse narcolepsy models: Hcrt (orexin) knockouts, ataxin-3-orexin, and doxycycline-controlled-diphtheria-toxin-A-orexin. RESULTS: We found an average 64% increase in the number of histamine neurons in human narcolepsy with cataplexy, with no overlap between narcoleptics and controls. However, we did not see altered numbers of HDC cells in any of the animal models of narcolepsy. INTERPRETATION: Changes in histamine cell numbers are not required for the major symptoms of narcolepsy, because all animal models have these symptoms. The histamine cell changes we saw in humans did not occur in the 4 animal models of Hcrt dysfunction we examined. Therefore, the loss of Hcrt receptor-2, of the Hcrt peptide, or of Hcrt cells is not sufficient to produce these changes. We speculate that the increased histamine cell numbers we see in human narcolepsy may instead be related to the process causing the human disorder. Although research has focused on possible antigens within the Hcrt cells that might trigger their autoimmune destruction, the present findings suggest that the triggering events of human narcolepsy may involve a proliferation of histamine-containing cells. We discuss this and other explanations of the difference between human narcoleptics and animal models of narcolepsy, including therapeutic drug use and species differences.


Subject(s)
Brain/metabolism , Cataplexy/metabolism , Histamine/metabolism , Narcolepsy/metabolism , Neurons/metabolism , Adult , Aged, 80 and over , Animals , Brain/cytology , Brain/pathology , Cell Count/methods , Disease Models, Animal , Dogs , Female , Humans , Male , Mice/genetics , Mice/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , Mutation/genetics
8.
Sleep ; 32(8): 993-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19725250

ABSTRACT

STUDY OBJECTIVES: Narcolepsy with cataplexy is characterized by a loss of approximately 90% of hypocretin (Hcrt) neurons. However, more than a quarter of narcoleptics do not have cataplexy and have normal levels of hypocretin in their cerebrospinal fluid, raising the possibility that their disease is caused by unrelated abnormalities. In this study we examined hypocretin pathology in narcolepsy without cataplexy. DESIGN: We examined postmortem brain samples, including the hypothalamus of 5 narcolepsy with cataplexy patients; one narcolepsy without cataplexy patient whose complete hypothalamus was available (patient 1); one narcolepsy without cataplexy patient with anterior hypothalamus available (patient 2); and 6 normal brains. The hypothalamic tissue was immunostained for Hcrt-1, melanin-concentrating hormone (MCH), and glial fibrillary acidic protein (GFAP). MEASUREMENTS AND RESULTS: Neither of the narcolepsy without cataplexy patients had a loss of Hcrt axons in the anterior hypothalamus. The narcolepsy without cataplexy patient whose entire brain was available for study had an overall loss of 33% of hypocretin cells compared to normals, with maximal cell loss in the posterior hypothalamus. We found elevated levels of gliosis with GFAP staining, with levels increased in the posterior hypothalamic nucleus by (295%), paraventricular (211%), periventricular (123%), arcuate (126%), and lateral (72%) hypothalamic nuclei, but not in the anterior, dorsomedial, or dorsal hypothalamus. There was no reduction in the number of MCH neurons in either patient. CONCLUSIONS: Narcolepsy without cataplexy can be caused by a partial loss of hypocretin cells.


Subject(s)
Cataplexy/pathology , Hypothalamus/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Narcolepsy/pathology , Neuropeptides/metabolism , Aged , Aged, 80 and over , Brain Mapping , Cell Count , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Hypothalamic Hormones , Immunoenzyme Techniques , Male , Melanins , Middle Aged , Neurons/pathology , Orexins , Pituitary Hormones
10.
Brain ; 130(Pt 6): 1586-95, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17491094

ABSTRACT

It has recently been reported that Parkinson's disease (PD) is preceded and accompanied by daytime sleep attacks, nocturnal insomnia, REM sleep behaviour disorder, hallucinations and depression, symptoms which are frequently as troublesome as the motor symptoms of PD. All these symptoms are present in narcolepsy, which is linked to a selective loss of hypocretin (Hcrt) neurons. In this study, the Hcrt system was examined to determine if Hcrt cells are damaged in PD. The hypothalamus of 11 PD (mean age 79 +/- 4) and 5 normal (mean age 77 +/- 3) brains was examined. Sections were immunostained for Hcrt-1, melanin concentrating hormone (MCH) and alpha synuclein and glial fibrillary acidic protein (GFAP). The substantia nigra of 10 PD brains and 7 normal brains were used for a study of neuromelanin pigmented cell loss. The severity of PD was assessed using the Hoehn and Yahr scale and the level of neuropathology was assessed using the Braak staging criteria. Cell number, distribution and size were determined with stereologic techniques on a one in eight series. We found an increasing loss of hypocretin cells with disease progression. Similarly, there was an increased loss of MCH cells with disease severity. Hcrt and MCH cells were lost throughout the anterior to posterior extent of their hypothalamic distributions. The percentage loss of Hcrt cells was minimal in stage I (23%) and was maximal in stage V (62%). Similarly, the percentage loss of MCH cells was lowest in stage I (12%) and was highest in stage V (74%). There was a significant increase (P = 0.0006, t = 4.25, df = 15) in the size of neuromelanin containing cells in PD patients, but no difference in the size of surviving Hcrt (P = 0.18, t = 1.39, df = 14) and MCH (P = 0.28, t = 1.39, df = 14) cells relative to controls. In summary, we found that PD is characterized by a massive loss of Hcrt neurons. Thus, the loss of Hcrt cells may be a cause of the narcolepsy-like symptoms of PD and may be ameliorated by treatments aimed at reversing the Hcrt deficit. We also saw a substantial loss of hypothalamic MCH neurons. The losses of Hcrt and MCH neurons are significantly correlated with the clinical stage of PD, not disease duration, whereas the loss of neuromelanin cells is significantly correlated only with disease duration. The significant correlations that we found between the loss of Hcrt and MCH neurons and the clinical stage of PD, in contrast to the lack of a relationship of similar strength between loss of neuromelanin containing cells and the clinical symptoms of PD, suggests a previously unappreciated relationship between hypothalamic dysfunction and the time course of the overall clinical picture of PD.


Subject(s)
Intracellular Signaling Peptides and Proteins/analysis , Neuropeptides/analysis , Parkinson Disease/metabolism , Aged , Aged, 80 and over , Cell Count , Disease Progression , Female , Glial Fibrillary Acidic Protein/analysis , Humans , Hypothalamic Hormones/analysis , Hypothalamus/chemistry , Hypothalamus/pathology , Immunoenzyme Techniques , Intracellular Signaling Peptides and Proteins/deficiency , Male , Melanins/analysis , Middle Aged , Neurons/chemistry , Neuropeptides/deficiency , Orexins , Parkinson Disease/pathology , Pituitary Hormones/analysis , Severity of Illness Index , Substantia Nigra/chemistry , alpha-Synuclein/analysis
11.
Brain Pathol ; 13(3): 340-51, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12946023

ABSTRACT

Human narcolepsy is correlated with a greatly reduced number of hypocretin (orexin) containing neurons and axons, and an elevated level of hypothalamic gliosis. We now report that the percentage loss of Hcrt cells and percentage elevation of GFAP staining are variable across forebrain and brain-stem nuclei, and are maximal in the posterior and tuberomammillary hypothalamic region. Regional gliosis and percent loss of hypocretin axons in narcoleptics are not correlated with regional hypocretin cell soma density in normals or with regional percent soma loss in narcoleptics. Rather they are independently and strongly correlated with the regional density of hypocretin axons and the message density for hypocretin receptor 2, as quantified in the rat. These results are consistent with the hypotheses that the loss of hypocretin function in narcolepsy results from a cytotoxic or immunologically mediated attack focused on hypocretin receptor 2 or an antigen anatomically linked to hypocretin receptor 2, and that this process is intensified in regions of high axonal density.


Subject(s)
Axons/metabolism , Carrier Proteins/metabolism , Gliosis/metabolism , Intracellular Signaling Peptides and Proteins , Narcolepsy/pathology , Neurons/pathology , Neuropeptides/metabolism , Adult , Aged , Aged, 80 and over , Astrocytes/metabolism , Astrocytes/pathology , Brain Stem/metabolism , Brain Stem/pathology , Cell Count/methods , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Hypothalamus/metabolism , Hypothalamus/pathology , Male , Middle Aged , Narcolepsy/metabolism , Neurons/metabolism , Orexins
SELECTION OF CITATIONS
SEARCH DETAIL
...