Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Res ; 81(12): 3319-3332, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33863778

ABSTRACT

Extracellular adenosine in tumors can suppress immune responses and promote tumor growth. Adenosine deaminase 2 (ADA2) converts adenosine into inosine. The role of ADA2 in cancer and whether it can target adenosine for cancer therapy has not been investigated. Here we show that increased ADA2 expression is associated with increased patient survival and enrichment of adaptive immune response pathways in several solid tumor types. Several ADA2 variants were created to improve catalytic efficiency, and PEGylation was used to prolong systemic exposure. In mice, PEGylated ADA2 (PEGADA2) inhibited tumor growth by targeting adenosine in an enzyme activity-dependent manner and thereby modulating immune responses. These findings introduce endogenous ADA2 expression as a prognostic factor and PEGADA2 as a novel immunotherapy for cancer. SIGNIFICANCE: This study identifies ADA2 as a prognostic factor associated with prolonged cancer patient survival and introduces the potential of enzymatic removal of adenosine with engineered ADA2 for cancer immunotherapy.


Subject(s)
Adenosine Deaminase/metabolism , Adenosine/antagonists & inhibitors , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasms/prevention & control , Adenosine Deaminase/genetics , Animals , Apoptosis , Cell Proliferation , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms/enzymology , Neoplasms/pathology , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Oncotarget ; 10(61): 6561-6576, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31762938

ABSTRACT

Hyaluronan accumulation in the tumor microenvironment is associated with poor prognosis in several solid human cancers. To understand the role of stromal hyaluronan in tumor progression, we engineered 3T3HAS3, a hyaluronan-producing fibroblast cell line, by lentiviral transduction of Balb/c 3T3 cells with the human hyaluronan synthase 3 (HAS3) gene. 3T3HAS3 cells significantly enhanced tumor growth when co-grafted with MDA-MB-468 cells in nude mice. Immunohistochemical analysis of the xenograft tumors showed that MDA-MB-468 cells were surrounded by hyaluronan-accumulating stroma, closely resembling the morphology observed in human breast cancer specimens. Tumor growth of MDA-MB-468 + 3T3HAS3 co-grafts was greatly reduced upon hyaluronan degradation by lentiviral transduction of a human hyaluronidase gene in 3T3HAS3 cells, or by systemic administration of pegvorhyaluronidase alfa (PEGPH20). In contrast, the growth of the co-graft tumors was not inhibited when CD44 expression was reduced or ablated by small hairpin RNA-mediated CD44 knockdown in MDA-MB-468 cells, CD44 CRISPR knockout in 3T3HAS3 cells, or by grafting these cells in CD44 knockout nude mice. Collectively, these data demonstrate that tumor growth of an engineered xenograft breast cancer model with hyaluronan-accumulating stroma can be dependent on hyaluronan and independent of CD44.

3.
Sci Rep ; 7(1): 3026, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28596531

ABSTRACT

Amber codon suppression for the insertion of non-natural amino acids (nnAAs) is limited by competition with release factor 1 (RF1). Here we describe the genome engineering of a RF1 mutant strain that enhances suppression efficiency during cell-free protein synthesis, without significantly impacting cell growth during biomass production. Specifically, an out membrane protease (OmpT) cleavage site was engineered into the switch loop of RF1, which enables its conditional inactivation during cell lysis. This facilitates extract production without additional processing steps, resulting in a scaleable extract production process. The RF1 mutant extract allows nnAA incorporation at previously intractable sites of an IgG1 and at multiple sites in the same polypeptide chain. Conjugation of cytotoxic agents to these nnAAs, yields homogeneous antibody drug conjugates (ADCs) that can be optimized for conjugation site, drug to antibody ratio (DAR) and linker-warheads designed for efficient tumor killing. This platform provides the means to generate therapeutic ADCs inaccessible by other methods that are efficient in their cytotoxin delivery to tumor with reduced dose-limiting toxicities and thus have the potential for better clinical impact.


Subject(s)
Amino Acids/chemistry , Immunoconjugates , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Protein Engineering , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, Liquid , Codon, Terminator , Drug Stability , Humans , Immunoconjugates/chemistry , Immunoconjugates/isolation & purification , Immunoconjugates/metabolism , Immunoconjugates/pharmacology , Immunoglobulin G/chemistry , Immunoglobulin G/pharmacology , Mass Spectrometry , Models, Molecular , Mutation , Peptide Termination Factors/metabolism , Protein Binding , Protein Conformation , Structure-Activity Relationship , Trastuzumab/chemistry , Trastuzumab/pharmacology
4.
Biophys J ; 110(9): 2106-19, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27166818

ABSTRACT

Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism.


Subject(s)
Adenocarcinoma/pathology , Extracellular Fluid/metabolism , Pancreatic Neoplasms/pathology , Animals , Extracellular Fluid/drug effects , Hyaluronic Acid/pharmacology , Hydrostatic Pressure , Mice , NIH 3T3 Cells , Pancreatic Neoplasms/metabolism , Viscosity
5.
Protein Eng Des Sel ; 27(4): 97-109, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24586053

ABSTRACT

Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF.


Subject(s)
Cell Surface Display Techniques/methods , Cell-Free System , Immunoglobulin Fab Fragments , Peptide Library , Antibodies/genetics , Antibodies, Monoclonal, Humanized/genetics , Carcinoembryonic Antigen/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin G/genetics , Trastuzumab , Vascular Endothelial Growth Factor A/metabolism
6.
MAbs ; 6(3): 671-8, 2014.
Article in English | MEDLINE | ID: mdl-24517929

ABSTRACT

Antibodies are well-established as therapeutics, and the preclinical and clinical pipeline of these important biologics is growing rapidly. Consequently, there is considerable interest in technologies to engineer and manufacture them. Mammalian cell culture is commonly used for production because eukaryotic expression systems have evolved complex and efficient chaperone systems for the folding of antibodies. However, given the ease and manipulability of bacteria, antibody discovery efforts often employ bacterial expression systems despite their limitations in generating high titers of functional antibody. Open-Cell Free Synthesis (OCFS) is a coupled transcription-translation system that has the advantages of prokaryotic systems while achieving high titers of antibody expression. Due to the open nature of OCFS, it is easily modified by chemical or protein additives to improve the folding of select proteins. As such, we undertook a protein additive screen to identify chaperone proteins that improve the folding and assembly of trastuzumab in OCFS. From the screen, we identified the disulfide isomerase DsbC and the prolyl isomerase FkpA as important positive effectors of IgG folding. These periplasmic chaperones function synergistically for the folding and assembly of IgG, and, when present in sufficient quantities, gram per liter IgG titers can be produced. This technological advancement allows the rapid development and manufacturing of immunoglobulin proteins and pushes OCFS to the forefront of production technologies for biologics.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Immunoglobulins/biosynthesis , Immunoglobulins/genetics , Molecular Chaperones/metabolism , Antibodies, Monoclonal, Humanized/biosynthesis , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Biotechnology , Cell-Free System , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulins/chemistry , Molecular Chaperones/genetics , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Protein Engineering , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trastuzumab
7.
Bioconjug Chem ; 25(2): 351-61, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24437342

ABSTRACT

Antibody-drug conjugates (ADCs) are a targeted chemotherapeutic currently at the cutting edge of oncology medicine. These hybrid molecules consist of a tumor antigen-specific antibody coupled to a chemotherapeutic small molecule. Through targeted delivery of potent cytotoxins, ADCs exhibit improved therapeutic index and enhanced efficacy relative to traditional chemotherapies and monoclonal antibody therapies. The currently FDA-approved ADCs, Kadcyla (Immunogen/Roche) and Adcetris (Seattle Genetics), are produced by conjugation to surface-exposed lysines, or partial disulfide reduction and conjugation to free cysteines, respectively. These stochastic modes of conjugation lead to heterogeneous drug products with varied numbers of drugs conjugated across several possible sites. As a consequence, the field has limited understanding of the relationships between the site and extent of drug loading and ADC attributes such as efficacy, safety, pharmacokinetics, and immunogenicity. A robust platform for rapid production of ADCs with defined and uniform sites of drug conjugation would enable such studies. We have established a cell-free protein expression system for production of antibody drug conjugates through site-specific incorporation of the optimized non-natural amino acid, para-azidomethyl-l-phenylalanine (pAMF). By using our cell-free protein synthesis platform to directly screen a library of aaRS variants, we have discovered a novel variant of the Methanococcus jannaschii tyrosyl tRNA synthetase (TyrRS), with a high activity and specificity toward pAMF. We demonstrate that site-specific incorporation of pAMF facilitates near complete conjugation of a DBCO-PEG-monomethyl auristatin (DBCO-PEG-MMAF) drug to the tumor-specific, Her2-binding IgG Trastuzumab using strain-promoted azide-alkyne cycloaddition (SPAAC) copper-free click chemistry. The resultant ADCs proved highly potent in in vitro cell cytotoxicity assays.


Subject(s)
Amino Acids/chemistry , Immunoconjugates/chemistry , Cell Line , Cell-Free System , Chromatography, Liquid , High-Throughput Screening Assays , Humans , Immunoconjugates/pharmacology , Tandem Mass Spectrometry
8.
Proc Natl Acad Sci U S A ; 103(42): 15422-7, 2006 Oct 17.
Article in English | MEDLINE | ID: mdl-17032757

ABSTRACT

Protein-protein complexes remain enticing, but extremely challenging, targets for small-molecule drug discovery. In a rare example described earlier, a high-affinity small molecule, SP4206 (Kd approximately 70 nM), was found to block binding of the IL-2alpha receptor (IL-2Ralpha) to IL-2 (Kd approximately 10 nM). Recently, the structure of the IL-2/IL-2Ralpha complex was solved [Rickert, M., Wang, X., Boulanger, M. J., Goriatcheva, N., Garcia, K. C. (2005) Science 308:1477-1480]. Using structural and functional analysis, we compare how SP4206 mimics the 83-fold larger IL-2Ralpha in binding IL-2. The binding free energy per contact atom (ligand efficiency) for SP4206 is about twice that of the receptor because of a smaller, but overlapping, contact epitope that insinuates into grooves and cavities not accessed by the receptor. Despite its independent design, the small molecule has a similar, but more localized, charge distribution compared with IL-2Ralpha. Mutational studies show that SP4206 targets virtually the same critical "hot-spot" residues on IL-2 that drive binding of IL-2Ralpha. Moreover, a mutation that enhances binding to the IL-2Ralpha near these hot spots also enhances binding to SP4206. Although the protein and small molecule do bind the same hot spot, they trap very different conformations of IL-2 because of its flexible nature. Our studies suggest that precise structural mimics of receptors are not required for high-affinity binding of small molecules, and they show that there are multiple solutions to tight binding at shared and adaptive hot spots.


Subject(s)
Interleukin-2 Receptor alpha Subunit/chemistry , Interleukin-2/metabolism , Molecular Mimicry , Protein Structure, Tertiary , Crystallography, X-Ray , Epitopes , Interleukin-2/chemistry , Interleukin-2/genetics , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Ligands , Models, Molecular , Molecular Sequence Data , Molecular Structure , Static Electricity
9.
J Am Chem Soc ; 125(50): 15280-1, 2003 Dec 17.
Article in English | MEDLINE | ID: mdl-14664558

ABSTRACT

The complexes between IL-2 and two similar small molecules, one a lead compound and the other a potent, affinity-optimized compound, were determined by X-ray crystallography. The lead compound (IC50 = 6 muM) bound to a hot spot on IL-2 in a groove that is not apparent in either the unliganded protein or a complex between IL-2 and a weakly bound drug fragment. The affinity-optimized compound (IC50 = 0.06 muM), which has an added aromatic acid fragment, bound in the same groove as the lead compound. In addition, a novel binding site was formed for the aromatic acid which is unseen in the complex with the lead compound. Thus, the hot spot on IL-2 is highly dynamic, with the protein changing form at multiple sites to maximize packing for each compound. Binding-site rigidity is often thought to play a role in high-affinity interactions. However, in this case, specific contacts between the small molecule and the protein are made despite the adaptivity of the hot spot. Given the change in morphology that was observed in IL-2, it is unlikely that a potent inhibitor could have been found by rational design. Therefore, fragment assembly methods offer the stochastic advantage of finding fragments in flexible protein regions where structural changes are unpredictable.


Subject(s)
Interleukin-2/antagonists & inhibitors , Interleukin-2/chemistry , Binding Sites , Drug Design , Interleukin-2/metabolism , Protein Conformation
10.
J Biol Chem ; 277(42): 39585-93, 2002 Oct 18.
Article in English | MEDLINE | ID: mdl-12171939

ABSTRACT

SAM (sterile alpha motif) domains are protein-protein interaction modules found in a large number of regulatory proteins. Byr2 and Ste4 are two SAM domain-containing proteins in the mating pheromone response pathway of the fission yeast, Schizosaccharomyces pombe. Byr2 is a mitogen-activated protein kinase kinase kinase that is regulated by Ste4. Tu et al. (Tu, H., Barr, M., Dong, D. L., and Wigler, M. (1997) Mol. Cell. Biol. 17, 5876-5887) showed that the isolated SAM domain of Byr2 binds a fragment of Ste4 that contains both a leucine zipper (Ste4-LZ) domain as well as a SAM domain, suggesting that Byr2-SAM and Ste4-SAM may form a hetero-oligomer. Here, we show that the individual SAM domains of Ste4 and Byr2 are monomeric at low concentrations and bind to each other in a 1:1 stoichiometry with a relatively weak dissociation constant of 56 +/- 3 microm. Inclusion of the Ste4-LZ domain, which determines the oligomeric state of Ste4, has a dramatic effect on binding affinity, however. We find that the Ste4-LZ domain is trimeric and, when included with the Ste4-SAM domain, yields a 3:1 Ste4-LZ-SAM:Byr2-SAM complex with a tight dissociation constant of 19 +/- 4 nm. These results suggest that the Ste4-LZ-SAM protein may recognize multiple binding sites on Byr2-SAM, indicating a new mode of oligomeric organization for SAM domains. The fact that high affinity binding occurs only with the addition of an oligomerization domain suggests that it may be necessary to include ancillary oligomerization modules when searching for binding partners of SAM domains.


Subject(s)
Fungal Proteins/chemistry , GTP-Binding Protein beta Subunits , Heterotrimeric GTP-Binding Proteins/chemistry , MAP Kinase Kinase Kinases , Mitogen-Activated Protein Kinases/chemistry , Saccharomyces cerevisiae Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces/enzymology , Binding Sites , Chromatography, Gel , Dimerization , Dose-Response Relationship, Drug , Glutathione Transferase/metabolism , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...