Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 394: 130243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142910

ABSTRACT

The research examined the capabilities of Yarrowia lipolytica (YL) and Pichia farinosa (PF) in converting sugars to ethanol and oleochemicals. Lipid, ethanol, protein yield and gene-expressions were analysed at different substrate concentrations (3 to 30 g/L) with glucose, food waste, and fermentation-effluent. Optimal results were obtained at 20 g/L using both synthetic carbon with 4.6 % of total lipid yield. Lauric and Caprylic acid dominance was noted in total lipid fractions. Protein accumulation (6 g/L) was observed in glucose system (20 g/L) indicating yeast strains potential as single-cell proteins (SCP). Fatty-acid desaturase (FAD12) and alcohol dehydrogenase (ADH) expressions were higher at optimum condition of YL (1.15 × 10-1, 3.8 × 10-2) and PF (5.8 × 10-2, 3.8 × 10-2) respectively. Maximum carbon reduction of 87 % depicted at best condition, aligning with metabolic yield. These findings highlights promising role of yeast as biorefinery biocatalyst.


Subject(s)
Refuse Disposal , Yarrowia , Yarrowia/metabolism , Ethanol/metabolism , Pichia/metabolism , Food , Lipids , Glucose/metabolism , Carbon/metabolism
2.
Micromachines (Basel) ; 13(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35888797

ABSTRACT

Microbial electrosynthesis system (MES; single-chambered) was fabricated and evaluated with carbon cloth/graphite as a working/counter electrode employing an enriched microbiome. Continuous syngas sparging (at working electrode; WE) enabled the growth of endo electrogenic bacteria by availing the inorganic carbon source. Applied potential (-0.5 V) on the working electrode facilitated the reduction in syngas, leading to the synthesis of fatty acids and alcohols. The higher acetic acid titer of 3.8 g/L and ethanol concentration of 0.2 g/L was observed at an active microbial metabolic state, evidencing the shift in metabolism from acetogenic to solventogenesis. Voltammograms evidenced distinct redox species with low charge transfer resistance (Rct; Nyquist impedance). Reductive catalytic current (-0.02 mA) enabled the charge transfer efficiency of the cathodes favoring syngas conversion to products. The surface morphology of carbon cloth and system-designed conditions favored the growth of electrochemically active consortia. Metagenomic analysis revealed the enrichment of phylum/class with Actinobacteria, Firmicutes/Clostridia and Bacilli, which accounts for the syngas fermentation through suitable gene loci.

3.
Bioresour Technol ; 351: 126937, 2022 May.
Article in English | MEDLINE | ID: mdl-35248708

ABSTRACT

Addressing the carbon emissions through microbial mediated fermentation is an emerging interest. Custom designed and fabricated gas fermentation (GF) systems were evaluated to optimize the headspace pressure, pH (6.5, 7.5, and 8.5), fermentation time, and substrate concentration by employing enriched homoacetogenic chemolithoautotrophs in non-genetic approach. Headspace pressure showed marked influence on the metabolic conversion of inorganic carbon to acetic and butyric acids with 26% higher productivity than the control (atmospheric pressure). Maximum volatile fatty acid (VFA) yield of 3.7 g/L was observed at alkaline pH (8.5) under 2 bar pressure at carbon load of 10 g/L, 96 h). Acetic (3.0 g/L) and butyric (0.7 g/L) acids were the major products upon conversion of 85% of the inorganic substrate. A better in-situ buffering (ß = 0.048) at pH 8.5 along with higher reductive current (RCC: -4.4 mA) depicted better performance of GF towards CO2 reduction.


Subject(s)
Carbon Dioxide , Fatty Acids , Bioreactors , Carbon , Fatty Acids, Volatile , Fermentation , Hydrogen-Ion Concentration , Reaction Time
4.
Article in English | MEDLINE | ID: mdl-35270390

ABSTRACT

Wastewater-based epidemiology (WBE) is emerging as a potential approach to study the infection dynamics of SARS-CoV-2 at a community level. Periodic sewage surveillance can act as an indicative tool to predict the early surge of pandemic within the community and understand the dynamics of infection and, thereby, facilitates for proper healthcare management. In this study, we performed a long-term epidemiological surveillance to assess the SARS-CoV-2 spread in domestic sewage over one year (July 2020 to August 2021) by adopting longitudinal sampling to represent a selected community (~2.5 lakhs population). Results indicated temporal dynamics in the viral load. A consistent amount of viral load was observed during the months from July 2020 to November 2020, suggesting a higher spread of the viral infection among the community, followed by a decrease in the subsequent two months (December 2020 and January 2021). A marginal increase was observed during February 2021, hinting at the onset of the second wave (from March 2021) that reached it speak in April 2021. Dynamics of the community infection rates were calculated based on the viral gene copies to assess the severity of COVID-19 spread. With the ability to predict the infection spread, longitudinal WBE studies also offer the prospect of zoning specific areas based on the infection rates. Zoning of the selected community based on the infection rates assists health management to plan and manage the infection in an effective way. WBE promotes clinical inspection with simultaneous disease detection and management, in addition to an advance warning signal to anticipate outbreaks, with respect to the slated community/zones, to tackle, prepare for and manage the pandemic.


Subject(s)
COVID-19 , Wastewater , COVID-19/epidemiology , Humans , SARS-CoV-2 , Sewage , Wastewater-Based Epidemiological Monitoring
6.
Environ Technol Innov ; 23: 101696, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34250217

ABSTRACT

Since COVID-19 outbreak, wastewater-based epidemiology (WBE) studies as surveillance system is becoming an emerging interest due to its functional advantage as a tool for early warning signal and to catalyze effective disease management strategies based on the community diagnosis. An attempt was made in this study to define and establish a methodological approach for conducting WBE studies in the framework of identifying/selection of surveillance sites, standardizing sampling policy, designing sampling protocols to improve sensitivity, adopting safety protocol, and interpreting the data. Data from hourly sampling indicated a peak in the viral RNA during the morning hours (6-9 am) when the all the domestic activities are maximum. The daily sampling and processing revealed the dynamic nature of infection spread among the population. The two sampling methods viz. grab, and composite showed a good correlation. Overall, this study establishes a structured protocol for performing WBE studies that could provide useful insights on the spread of the pandemic at a given point of time. Moreover, this framework could be extrapolated to monitor several other clinically relevant diseases. Following these guidelines, it is possible to achieve measurable and reliable SARS-CoV-2 RNA concentrations in wastewater infrastructure and therefore, provides a methodological basis for the establishment of a national surveillance system.

7.
Bioresour Technol ; 326: 124676, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33556705

ABSTRACT

Global need for transformation from fossil-based to bio-based economy is constantly emerging for the production of low-carbon/renewable energy/products. Microbial fuel cell (MFC) catalysed by bio-electrochemical process gained significant attention initially for its unique potential to generate energy. Diversification of MFC is an emerging trend in the context of prioritising/enhancing product output while exploring the mechanism specificity of individual processes. Bioelectrochemical treatment system (BET), microbial electrosynthesis system (MES), bioelectrochemical system (BES), electro-fermentation (EF), microbial desalination cell (MDC), microbial electrolysis cell (MEC) and electro-methanogenesis (EM) are the diversified MFC systems that are being researched actively. Owing to its broad diversification, MFC domain is increasing its potential credibility as a platform technology. Microbial catalyzed electrochemical reactions are the key which directly/indirectly are proportionally linked to electrometabolic activity of microorganisms towards final anticipated output. This review intends to holistically document the mechanisms, applications and current trends of MFC diversifications towards multi-faced applications.


Subject(s)
Bioelectric Energy Sources , Electrodes , Electrolysis , Fermentation
8.
Bioresour Technol ; 320(Pt A): 124272, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33142252

ABSTRACT

Microbial electrochemical conversion of CO2 to value-added products needs effectual biocathodes. In this study, three different working electrodes (biocathode) namely carbon cloth (CC, MES1), stainless steel mesh (SS, MES2) and hybrid electrode (CC + SS, MES3) were evaluated in membrane-less single-chambered Microbial electrosynthesis systems (MESs). Performance of MES was assessed by total volatile fatty acids (VFA) productivity and, reductive current generations upon continuous poised potential (-0.4 V vs. Ag/AgCl (3.5 M KCl)). MES3 showed higher VFA synthesis (CC + SS; 1.4 g VFA/L), followed by MES1 (CC; 1.1 g VFA/L) and MES2 (SS; 0.8 g VFA/L) with corresponding reductive current generation of -1.13 mA, -2.74 mA and -0.39 mA. Electro-kinetics revealed the biocathode efficacy towards enhanced electrotrophy with confined electron losses by regulating electron flux in the system. The study infers the potential of hybrid electrode as an efficient biocathode for the reduction of CO2 to VFA synthesis.


Subject(s)
Bioelectric Energy Sources , Carbon Dioxide , Electrodes , Fatty Acids , Fatty Acids, Volatile , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL