Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 14(3): 739-42, 2004 Feb 09.
Article in English | MEDLINE | ID: mdl-14741280
2.
Bioorg Med Chem ; 7(3): 489-508, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10220035

ABSTRACT

A new series of non-peptidic renin inhibitors having a 2-substituted butanediamide moiety at the P2 and P3 positions has been identified. The optimized inhibitors have IC50 values of 0.8 to 1.4 nM and 2.5 to 7.6 nM in plasma renin assays at pH 6.0 and 7.4, respectively. When evaluated in the normotensive cynomolgus monkey model, two of the most potent inhibitors were orally active at a dose as low as 3 mg/kg. These potent renin inhibitors are characterized by oral bioavailabilities of 40 and 89% in the cynomolgus monkey. Inhibitor 3z (BILA 2157 BS) was selected as candidate for pre-development.


Subject(s)
Amides/chemistry , Renin/antagonists & inhibitors , Administration, Oral , Amides/pharmacokinetics , Amides/pharmacology , Animals , Biological Availability , Humans , Macaca fascicularis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Renin/blood , Spectrophotometry, Infrared , Structure-Activity Relationship
3.
Bioorg Med Chem ; 6(12): 2317-36, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9925293

ABSTRACT

Renin inhibitors containing a 4,5- or a 3,5-dihydroxy-2-substituted-6-phenylhexanamide fragment at the P2-P3 sites have been prepared and evaluated. The four possible diastereomeric diols of the two series of inhibitors were synthesized to determine the optimal configuration of the carbinol centers for these replacements. The most potent inhibitors of each series, la and 2c have a molecular weight of only 503 and IC50 values of 23 and 20 nM in a human plasma renin assay at pH 6.0. Their very low aqueous solubility limited their further evaluation. The efficacy of these P2-P3 replacements is a result of their ability to maintain the important hydrogen-bonds with the enzyme. Due to conformational differences with the dipeptide, adjustment at the P2 side chain was required. These 4,5- and 3,5-dihydroxyhexanamide segments could be seen as novel N-terminal dipeptide replacements.


Subject(s)
Amides/chemical synthesis , Protease Inhibitors/chemical synthesis , Renin/antagonists & inhibitors , Amides/chemistry , Amides/pharmacology , Humans , Indicators and Reagents , Kinetics , Molecular Conformation , Molecular Structure , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Renin/blood , Solubility , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL