Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Zookeys ; 1200: 159-182, 2024.
Article in English | MEDLINE | ID: mdl-38756344

ABSTRACT

Large carrion beetles (Silphidae) are the focus of ongoing behavioral ecology, forensic, ecological, conservation, evolutionary, systematic, and other research, and were recently reclassified as a subfamily of Staphylinidae. Twenty-three analyses in 21 publications spanning the years 1927-2023 that are relevant to the question of the evolutionary origin and taxonomic classification of Silphidae are reviewed. Most of these analyses (20) found Silphidae nested inside Staphylinidae (an average of 4.38 branches deep), two found Silphidae in an ambiguous position, and one found Silphidae outside Staphylinidae, as sister to Hydrophilidae. There is strong evidence supporting the hypothesis that large carrion beetles evolved from within Staphylinidae and good justification for their classification as the subfamily Silphinae of the megadiverse, and apparently now monophyletic, Staphylinidae. Considerable uncertainty remains regarding the interrelationships and monophyly of many staphylinid subfamilies. Nonetheless, the subfamily Tachyporinae was found to be the sister of Silphinae in more analyses (7) than any other subfamily.

2.
R Soc Open Sci ; 9(3): 211771, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35345430

ABSTRACT

Beetles constitute the most biodiverse animal order with over 380 000 described species and possibly several million more yet unnamed. Recent phylogenomic studies have arrived at considerably incongruent topologies and widely varying estimates of divergence dates for major beetle clades. Here, we use a dataset of 68 single-copy nuclear protein-coding (NPC) genes sampling 129 out of the 193 recognized extant families as well as the first comprehensive set of fully justified fossil calibrations to recover a refined timescale of beetle evolution. Using phylogenetic methods that counter the effects of compositional and rate heterogeneity, we recover a topology congruent with morphological studies, which we use, combined with other recent phylogenomic studies, to propose several formal changes in the classification of Coleoptera: Scirtiformia and Scirtoidea sensu nov., Clambiformia ser. nov. and Clamboidea sensu nov., Rhinorhipiformia ser. nov., Byrrhoidea sensu nov., Dryopoidea stat. res., Nosodendriformia ser. nov. and Staphyliniformia sensu nov., and Erotyloidea stat. nov., Nitiduloidea stat. nov. and Cucujoidea sensu nov., alongside changes below the superfamily level. Our divergence time analyses recovered a late Carboniferous origin of Coleoptera, a late Palaeozoic origin of all modern beetle suborders and a Triassic-Jurassic origin of most extant families, while fundamental divergences within beetle phylogeny did not coincide with the hypothesis of a Cretaceous Terrestrial Revolution.

3.
Cladistics ; 37(2): 185-210, 2021 04.
Article in English | MEDLINE | ID: mdl-34478187

ABSTRACT

Within the hyperdiverse beetle family Staphylinidae, Dasycerinae is one of the smallest and most cryptic subfamilies, comprising a sole extant genus characterized by a latridiid beetle-like body form. Little has been known about their early diversification, character evolution, phylogeny and historical biogeography because of limited fossil material and lack of a phylogeny integrating extant and extinct representatives. Here we report an unexpectedly diverse dasycerine fauna from the mid-Cretaceous of northern Myanmar, including a new genus and four new species. To reconstruct the early evolutionary history of Dasycerinae, we present a phylogenetic framework of the subfamily based on a dataset integrating all extant and extinct taxa using parsimony, maximum-likelihood and Bayesian methods. †Cedasyrus gen. n., characterized by distinct sexual dimorphism in antennal and elytral lengths, is recovered as the basal-most lineage, sister to the remaining two extinct genera and all living Dasycerus species. †Vetudasycerus is recovered as sister to †Protodasycerus + Dasycerus. Among all extinct taxa, †Protodasycerus bears distinctly longer elytra, and appears to represent a transitional form from †Vetudasycerus to Dasycerus. Phylogenetic inferences and ancestral distribution reconstruction support an "Out-of-Orient" model for Dasycerinae. Either the Bering- or North Atlantic Land Bridge may have served as a passageway for dasycerine dispersal between Eurasian and North American continents. An elevation-reconstruction analysis indicated that the ancestor of the extant Dasycerus probably lived at a high altitude and stayed at this elevation through the end of the Miocene. We propose that the extinction of dasycerine ancestors living on the Tethyan islands at low altitude was likely caused by sea-level rise and climatic warming during the Late Cretaceous. The high-altitude areas might have played the role of refugia that harboured subalpine derivatives which eventually gave rise to the extant Dasycerus.


Subject(s)
Coleoptera/anatomy & histology , Animals , Bayes Theorem , Biological Evolution , Coleoptera/classification , Fossils , Myanmar , Phylogeny , Phylogeography , Sex Characteristics
4.
Curr Zool ; 66(4): 435-444, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32617092

ABSTRACT

Staphylinoidea (Insecta: Coleoptera) is one of the most species-rich groups in animals, but its huge diversity can hardly be explained by the popular hypothesis (co-radiation with angiosperms) that applies to phytophagous beetles. We estimated the evolutionary mode of staphylinoid beetles and investigated the relationship between the evolutionary mode and palaeoclimate change, and thus the factors underlying the current biodiversity pattern of staphylinoid beetles. Our results demonstrate that staphylinoid beetles originated at around the Triassic-Jurassic bound and the current higher level clades underwent rapid evolution (indicated by increased diversification rate and decreased body size disparity) in the Jurassic and in the Cenozoic, both with low-energy climate, and they evolved much slower during the Cretaceous with high-energy climate. Climate factors, especially low O2 and high CO2, promoted the diversification rate and among-clade body size disparification in the Jurassic. In the Cenozoic, however, climate factors had negative associations with diversification rate but little with body size disparification. Our present study does not support the explosion of staphylinoid beetles as a direct outcome of the Cretaceous Terrestrial Revolution (KTR). We suppose that occupying and diversifying in refuge niches associated with litter may elucidate rapid radiations of staphylinoid beetles in low-energy conditions.

5.
Insects ; 11(3)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143338

ABSTRACT

The megadiverse subfamily Staphylininae traditionally belonged to the best-defined rove beetle taxa, but the advent of molecular phylogenetics in the last decade has brought turbulent changes to the group's classification. Here, we reevaluate the internal relationships among the tribes of Staphylininae by implementing tree inference methods that suppress common sources of systematic error. In congruence with morphological data, and in contrast to some previous phylogenetic studies, we unambiguously recover Staphylininae and Paederinae as monophyletic in the traditional sense. We show that the recently proposed subfamily Platyprosopinae (Arrowinus and Platyprosopus) is a phylogenetic artefact and reinstate Arrowinus as a member of Arrowinini stat. res. and Platyprosopus as a member of Platyprosopini stat. res. We show that several recent changes to the internal classification of the subfamily are phylogenetically unjustified and systematically unnecessary. We, therefore, reestablish Platyprosopini, Staphylinini, and Xantholinini as tribes within Staphylininae (all stat. res.) and recognize Coomaniini as a tribe (stat. nov.) rather than subfamily. Consequently, the traditional ranks of the subtribes Acylophorina, Afroquediina, Amblyopinina, Antimerina, †Baltognathina, Cyrtoquediina, Erichsoniina, Hyptiomina, Indoquediina, Quediina, and Tanygnathinina are restored (all stat. res.). We review the current classification of Staphylininae and discuss sources of incongruence in multigene phylogenies.

6.
Sci Rep ; 9(1): 15137, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31641139

ABSTRACT

Staphylininae is the third largest subfamily of the enormous family Staphylinidae. Monophyly of Staphylininae and its sister relationship to the subfamily Paederinae have been broadly accepted according to both conventional morphology- and molecular-based phylogenies until the last three years. Recent molecular phylogenies rejected monophyly of Staphylininae and regarded Paederinae as a clade within it. This paper re-evaluates the recent molecular work, aiming to clarify the relationship between Staphylininae and Paederinae and resolve intertribal relationships within Staphylininae. Based on a new six-gene data set (5707 bp) for 92 taxa including Oxyporinae (outgroup), representatives of Paederinae, and members of all extant tribes of Staphylininae from published DNA data in GenBank, we generated a well-resolved phylogeny of Staphylininae with all deep nodes (intertribal relationships) strongly supported, and reassert the hypothesis that Staphylininae is monophyletic and indeed the sister group to Paederinae using both Bayesian and maximum likelihood inference. Additionally, our study is a case-study to show that both outgroup selection and completeness of nucleotide data can influence the outcome of a molecular phylogeny. With an increasing number of staphylinid fossils being discovered, the robust phylogeny of Staphylininae inferred by our research will provide a good framework for understanding the early evolution of this group.


Subject(s)
Coleoptera/anatomy & histology , Coleoptera/genetics , Phylogeny , Animals , Bayes Theorem , Coleoptera/classification , Databases, Genetic , Genes, Insect
7.
Proc Biol Sci ; 283(1845)2016 12 28.
Article in English | MEDLINE | ID: mdl-28003444

ABSTRACT

Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up.


Subject(s)
Biological Evolution , Coleoptera/anatomy & histology , Fungi , Animals , Coleoptera/classification , Fossils
8.
Proc Natl Acad Sci U S A ; 111(39): 14170-4, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25225362

ABSTRACT

The reconstruction and timing of the early stages of social evolution, such as parental care, in the fossil record is a challenge, as these behaviors often do not leave concrete traces. One of the intensely investigated examples of modern parental care are the modern burying beetles (Silphidae: Nicrophorus), a lineage that includes notable endangered species. Here we report diverse transitional silphids from the Mesozoic of China and Myanmar that provide insights into the origins of parental care. Jurassic silphids from Daohugou, sharing many defining characters of Nicrophorinae, primitively lack stridulatory files significant for parental care communications; although morphologically similar, Early Cretaceous nicrophorines from the Jehol biota possess such files, indicating that a system of parental care had evolved by this early date. More importantly, burying beetles of the genus Nicrophorus have their earliest first record in mid-Cretaceous Burmese amber, and document early evolution of elaborate biparental care and defense of small vertebrate carcasses for their larvae. Parental care in the Early Cretaceous may have originated from competition between silphids and their predators. The rise of the Cretaceous Nicrophorinae implies a biology similar to modern counterparts that typically feed on carcasses of small birds and mammals.


Subject(s)
Coleoptera/physiology , Animals , Biological Evolution , China , Coleoptera/anatomy & histology , Coleoptera/growth & development , Feeding Behavior , Female , Food Chain , Fossils , History, Ancient , Larva/growth & development , Male , Myanmar , Social Behavior
9.
Zookeys ; (353): 1-24, 2013.
Article in English | MEDLINE | ID: mdl-24294095

ABSTRACT

Experimental research on beetle responses to removal of logging residues following clearcut harvesting in the boreal balsam fir forest of Quebec revealed several abundant rove beetle (Staphylinidae) species potentially important for long-term monitoring. To understand the trophic affiliations of these species in forest ecosystems, it was necessary to analyze their gut contents. We used microscopic and molecular (DNA) methods to identify the gut contents of the following rove beetles: Atheta capsularis Klimaszewski, Atheta klagesi Bernhauer, Oxypoda grandipennis (Casey), Bryophacis smetanai Campbell, Ischnosoma longicorne (Mäklin), Mycetoporus montanus Luze, Tachinus frigidus Erichson, Tachinus fumipennis (Say), Tachinus quebecensis Robert, and Pseudopsis subulata Herman. We found no apparent arthropod fragments within the guts; however, a number of fungi were identified by DNA sequences, including filamentous fungi and budding yeasts [Ascomycota: Candida derodonti Suh & Blackwell (accession number FJ623605), Candida mesenterica (Geiger) Diddens & Lodder (accession number FM178362), Candida railenensis Ramirez and Gonzáles (accession number JX455763), Candida sophie-reginae Ramirez & González (accession number HQ652073), Candida sp. (accession number AY498864), Pichia delftensis Beech (accession number AY923246), Pichia membranifaciens Hansen (accession number JQ26345), Pichia misumaiensis Y. Sasaki and Tak. Yoshida ex Kurtzman 2000 (accession number U73581), Pichia sp. (accession number AM261630), Cladosporium sp. (accession number KF367501), Acremoniumpsammosporum W. Gams (accession number GU566287), Alternaria sp. (accession number GU584946), Aspergillus versicolor Bubak (accession number AJ937750), and Aspergillusamstelodami (L. Mangin) Thom and Church (accession number HQ728257)]. In addition, two species of bacteria [Bradyrhizobium japonicum (Kirchner) Jordan (accession number BA000040) and Serratia marcescens Bizio accession number CP003942] were found in the guts. These results not only provide evidence of the consumer-resource relations of these beetles but also clarify the relationship between rove beetles, woody debris and fungi. Predominance of yeast-feeding by abundant rove beetles suggests that it may play an important role in their dietary requirements.

10.
J Morphol ; 271(8): 910-31, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20535815

ABSTRACT

To investigate whether specialization to spore- (or pollen-) feeding in advanced Aleocharinae is mirrored by their head anatomy, we compiled and compared synchrotron X-ray micro-tomography datasets for 11 Aleocharinae in conjunction with previous data for two aleocharine and six outgroup species (two nonstaphylinids, four staphylinids). We describe the presence/absence of head muscles and investigate the variability of points of origin by character mapping analyses. Monophyly of Aleocharinae is supported by the absence of M. 48 (M. tentoriobuccalis anterior), and by changes in the origins of Mm. 1, 2, 17, 18, 28, 29, 30. Within Aleocharinae the origins of the labial muscles (Mm. 28-30) have shifted posteriorly to the gula, which might enhance the movement posterad of the hypopharynx and partly compensate for the loss of M. 48. We also analyzed the general organization of the hypopharynx-prementum complex and the fine structure of the mandibles through SEM studies. In the absence of grinding mandibular molae like those of most mycophagous Coleoptera, seven aleocharine species studied have evolved "pseudomolae" at the ventral side of the mandibles that replace true molae as secondary grinding surfaces. In these species, the hypopharynx is elevated and displaced anteriorly, bearing a bowl-like depression on its surface that functions as a mortar where spores are ground between the hypopharynx and the mandibles. Two of these species are not yet known to feed on spores or pollen. Another species (Oxypoda alternans) is thought to feed on fungus material but bears no pseudomolae on its mandibles.


Subject(s)
Coleoptera/anatomy & histology , Animals , Coleoptera/classification , Coleoptera/physiology , Feeding Behavior , Head/anatomy & histology , Hypopharynx/anatomy & histology , Mandible/anatomy & histology , Muscles/anatomy & histology , Phylogeny , Pollen , Spores, Fungal , Tomography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL
...