Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 74(9): 1066-1077, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32394727

ABSTRACT

The ubiquitous pollution of the environment with microplastics, a diverse suite of contaminants, is of growing concern for science and currently receives considerable public, political, and academic attention. The potential impact of microplastics in the environment has prompted a great deal of research in recent years. Many diverse methods have been developed to answer different questions about microplastic pollution, from sources, transport, and fate in the environment, and about effects on humans and wildlife. These methods are often insufficiently described, making studies neither comparable nor reproducible. The proliferation of new microplastic investigations and cross-study syntheses to answer larger scale questions are hampered. This diverse group of 23 researchers think these issues can begin to be overcome through the adoption of a set of reporting guidelines. This collaboration was created using an open science framework that we detail for future use. Here, we suggest harmonized reporting guidelines for microplastic studies in environmental and laboratory settings through all steps of a typical study, including best practices for reporting materials, quality assurance/quality control, data, field sampling, sample preparation, microplastic identification, microplastic categorization, microplastic quantification, and considerations for toxicology studies. We developed three easy to use documents, a detailed document, a checklist, and a mind map, that can be used to reference the reporting guidelines quickly. We intend that these reporting guidelines support the annotation, dissemination, interpretation, reviewing, and synthesis of microplastic research. Through open access licensing (CC BY 4.0), these documents aim to increase the validity, reproducibility, and comparability of studies in this field for the benefit of the global community.


Subject(s)
Microplastics/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , Water Quality , Water/chemistry , Guidelines as Topic , Reproducibility of Results
2.
Sci Total Environ ; 730: 138887, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32402960

ABSTRACT

The hypothesis that plastics can transfer chemical pollutants to organisms after ingestion has been supported by several lab and field studies. However, models indicate that this transfer could be bidirectional and that whether chemicals move from plastics to the animal or vice versa, depends on several factors, including the relative concentrations of chemicals in both the animal and the plastics ingested. To explore this phenomenon in the field, we examined the relative concentrations of several halogenated flame retardants (HFRs) in a population of urban-dwelling ring-billed gulls (Larus delawarensis) and the plastics in their gastrointestinal (GI) tracts. We predicted the direction of transfer for HFRs between these birds and their ingested plastics using assumptions based on equilibrium theory. Because we were also interested in the sources of ingested plastics in this population, we investigated the relationships between time spent in different foraging habitats (determined using GPS-based telemetry) and the amounts and morphologies of plastics in their GI tracts. Results suggest that for this highly HFR-exposed population of ring-billed gulls, chemical transfer between plastics and bird is bidirectional, with a dominance of transfer from bird to ingested plastics. We also observed a relationship whereby birds that ingested no or low amounts of plastics were most closely associated with the use of residential habitats. Overall, we conclude that whether ingested plastics is a source or sink of chemicals to organisms is a complex and context-dependent phenomenon, and likely varies based on parameters such as exposure level and feeding ecology.


Subject(s)
Charadriiformes , Gastrointestinal Tract , Animals , Environmental Monitoring , Environmental Pollutants , Flame Retardants , Plastics
3.
Appl Spectrosc ; 74(9): 976-988, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32285682

ABSTRACT

Automation and subsampling have been proposed as solutions to reduce the time required to quantify and characterize microplastics in samples using spectroscopy. However, there are methodological dilemmas associated with automation that are preventing its widespread implementation including ensuring particles stay adhered to the filter during filter mapping and developing an appropriate subsampling strategy to reduce the time needed for analysis. We provide a solution to the particle adherence issue by applying Skin Tac, a non-polymeric permeable adhesive that allows microplastic particles to adhere to the filter without having their Raman signal masked by the adhesive. We also explore different subsampling strategies to help inform how to take a representative subsample. Based on the particle distributions observed on filters, we determined that assuming a homogenous particle distribution is inappropriate and can lead to over- and under-estimations of extrapolated particle counts. Instead, we provide recommendations for future studies that wish to subsample to increase the throughput of samples for spectroscopic analysis.

4.
Anal Chim Acta ; 1100: 107-117, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31987130

ABSTRACT

Microplastics are ubiquitous in the aquatic and terrestrial environment. To prevent further contamination, methods to determine their sources are needed. Techniques to quantify and characterize microplastics in the environment are still evolving for polymers and the additives and leachable substances embedded therein, which constitute the "chemical fingerprint" of an environmental microplastic. There is a critical need for analytical methods that yield such diagnostic information on environmental microplastics that enables identification of their composition and sources of pollution. This study reports on a novel approach for rapid fingerprinting of environmental microplastics and the screening of additives using Direct Analysis in Real Time (DART)-high resolution mass spectrometry. A variety of plastic samples were investigated, including virgin pre-production pellets, microbeads from personal care products, microplastics found in the aquatic environment, and synthetic fibers. The resulting mass spectra display ∼10,000 discrete peaks, corresponding to plastic additives released by thermal desorption and polymer degradation products generated by pyrolysis. These were used to characterize differences among plastic types, microplastic source materials, and environmental samples. Multivariate statistics and elemental composition analysis approaches were applied to analyze fingerprints from the mass spectra. This promising analytical approach is sensitive, (potentially) high-throughput, and can aid in the elucidation of possible sources of microplastics and perhaps eventually to the analysis of bulk environmental samples for plastics.

6.
Environ Sci Technol ; 50(17): 9289-97, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27507188

ABSTRACT

The accumulation of phthalate esters, brominated flame retardants (BFRs) and organophosphate esters (OPEs) by clothing from indoor air and transfer via laundering to outdoors were investigated. Over 30 days cotton and polyester fabrics accumulated 3475 and 1950 ng/dm(2) ∑5phthalates, 65 and 78 ng/dm(2) ∑10BFRs, and 1200 and 310 ng/dm(2) ∑8OPEs, respectively. Planar surface area concentrations of OPEs and low molecular weight phthalates were significantly greater in cotton than polyester and similar for BFRs and high molecular weight phthalates. This difference was significantly and inversely correlated with KOW, suggesting greater sorption of polar compounds to polar cotton. Chemical release from cotton and polyester to laundry water was >80% of aliphatic OPEs (log KOW < 4), < 50% of OPEs with an aromatic structure, 50-100% of low molecular weight phthalates (log KOW 4-6), and < detection-35% of higher molecular weight phthalates (log KOW > 8) and BFRs (log KOW > 6). These results support the hypothesis that clothing acts an efficient conveyer of soluble semivolatile organic compounds (SVOCs) from indoors to outdoors through accumulation from air and then release during laundering. Clothes drying could as well contribute to the release of chemicals emitted by electric dryers. The results also have implications for dermal exposure.


Subject(s)
Esters , Flame Retardants , Clothing , Organophosphates , Water
SELECTION OF CITATIONS
SEARCH DETAIL