Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Brain Struct Funct ; 228(9): 2165-2177, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804431

ABSTRACT

Integrating the underlying brain circuit's structural and functional architecture is required to explore the functional organization of cognitive networks. In that regard, we recently introduced the Functionnectome. This structural-functional method combines an fMRI acquisition with tractography-derived white matter connectivity data to map cognitive processes onto the white matter. However, this multimodal integration faces three significant challenges: (1) the necessarily limited overlap between tractography streamlines and the grey matter, which may reduce the amount of functional signal associated with the related structural connectivity; (2) the scrambling effect of crossing fibers on functional signal, as a single voxel in such regions can be structurally connected to several cognitive networks with heterogeneous functional signals; and (3) the difficulty of interpretation of the resulting cognitive maps, as crossing and overlapping white matter tracts can obscure the organization of the studied network. In the present study, we tackled these problems by developing a streamline-extension procedure and dividing the white matter anatomical priors between association, commissural, and projection fibers. This approach significantly improved the characterization of the white matter involvement in the studied cognitive processes. The new Functionnectome priors produced are now readily available, and the analysis workflow highlighted here should also be generalizable to other structural-functional approaches. We improved the Functionnectome approach to better study the involvement of white matter in brain function by separating the analysis of the three classes of white matter fibers (association, commissural, and projection fibers). This step successfully clarified the activation maps and increased their statistical significance.


Subject(s)
White Matter , Brain , Magnetic Resonance Imaging , Gray Matter , Cerebral Cortex
2.
Neuroimage Clin ; 40: 103529, 2023.
Article in English | MEDLINE | ID: mdl-37857232

ABSTRACT

It is currently unknown how quantitative diffusion and myelin MRI designs affect the results of a longitudinal study. We used two independent datasets containing 6 monthly MRI measurements from 20 healthy controls and 20 relapsing-remitting multiple sclerosis (RR-MS) patients. Six designs were tested, including 3 MRI acquisitions, either over 6 months or over a shorter study duration, with balanced (same interval) or unbalanced (different interval) time intervals between MRI acquisitions. First, we show that in RR-MS patients, the brain changes over time obtained with 3 MRI acquisitions were similar to those observed with 5 MRI acquisitions and that designs with an unbalanced time interval showed the highest similarity, regardless of study duration. No significant brain changes were found in the healthy controls over the same periods. Second, the study duration affects the sample size in the RR-MS dataset; a longer study requires more subjects and vice versa. Third, the number of follow-up acquisitions and study duration affect the sensitivity and specificity of the associations with clinical parameters, and these depend on the white matter bundle and MRI measure considered. Together, this suggests that the optimal design depends on the assumption of the dynamics of change in the target population and the accuracy required to capture these dynamics. Thus, this work provides a better understanding of key factors to consider in a longitudinal study and provides clues for better strategies in clinical trial design.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Follow-Up Studies , Longitudinal Studies , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Myelin Sheath
3.
Hum Brain Mapp ; 44(9): 3758-3780, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37067096

ABSTRACT

Assessing the consistency of quantitative MRI measurements is critical for inclusion in longitudinal studies and clinical trials. Intraclass coefficient correlation and coefficient of variation were used to evaluate the different consistency aspects of diffusion- and myelin-based MRI measures. Multi-shell diffusion and inhomogeneous magnetization transfer data sets were collected from 20 healthy adults at a high-frequency of five MRI sessions. The consistency was evaluated across whole bundles and the track-profile along the bundles. The impact of the fiber populations on the consistency was also evaluated using the number of fiber orientations map. For whole and profile bundles, moderate to high reliability of diffusion and myelin measures were observed. We report higher reliability of measures for multiple fiber populations than single. The overall portrait of the most consistent measurements and bundles drawn from a wide range of MRI techniques presented here will be particularly useful for identifying reliable biomarkers capable of detecting, monitoring and predicting white matter changes in clinical applications and has the potential to inform patient-specific treatment strategies.


Subject(s)
White Matter , Adult , Humans , White Matter/diagnostic imaging , Myelin Sheath , Reproducibility of Results , Magnetic Resonance Imaging , Longitudinal Studies , Brain/diagnostic imaging
4.
Sci Data ; 9(1): 725, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36433966

ABSTRACT

TractoInferno is the world's largest open-source multi-site tractography database, including both research- and clinical-like human acquisitions, aimed specifically at machine learning tractography approaches and related ML algorithms. It provides 284 samples acquired from 3 T scanners across 6 different sites. Available data includes T1-weighted images, single-shell diffusion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal, fiber ODFs, and reference streamlines for 30 delineated bundles generated using 4 tractography algorithms, as well as masks needed to run tractography algorithms. Manual quality control was additionally performed at multiple steps of the pipeline. We showcase TractoInferno by benchmarking the learn2track algorithm and 5 variations of the same recurrent neural network architecture. Creating the TractoInferno database required approximately 20,000 CPU-hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours of training baseline models, and 4 Tb of storage, to produce a final database of 350 Gb. By providing a standardized training dataset and evaluation protocol, TractoInferno is an excellent tool to address common issues in machine learning tractography.

5.
Neuroimage Clin ; 36: 103235, 2022.
Article in English | MEDLINE | ID: mdl-36272339

ABSTRACT

Medial temporal structures, namely the hippocampus, the entorhinal cortex and the parahippocampal gyrus, are particularly vulnerable to Alzheimer's disease and hypoxemia. Here, we tested the associations between obstructive sleep apnea (OSA) severity and medial temporal lobe volumes in 114 participants aged 55-86 years (35 % women). We also investigated the impact of sex, age, cognitive status, and free-water fraction correction on these associations. Increased OSA severity was associated with larger hippocampal and entorhinal cortex volumes in women, but not in men. Greater OSA severity also correlated with increased hippocampal volumes in participants with amnestic mild cognitive impairment, but not in cognitively unimpaired participants, regardless of sex. Using free-water corrected volumes eliminated all significant associations with OSA severity. Therefore, the increase in medial temporal subregion volumes may possibly be due to edema. Whether these structural manifestations further progress to neuronal death in non-treated OSA patients should be investigated.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Sleep Apnea, Obstructive , Male , Humans , Female , Magnetic Resonance Imaging , Temporal Lobe/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Sleep Apnea, Obstructive/diagnostic imaging , Cognition/physiology , Water
6.
Front Neuroimaging ; 1: 917806, 2022.
Article in English | MEDLINE | ID: mdl-37555143

ABSTRACT

Modern tractography algorithms such as anatomically-constrained tractography (ACT) are based on segmentation maps of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). These maps are generally estimated from a T1-weighted (T1w) image and then registered in diffusion weighted images (DWI) space. Registration of T1w to diffusion space and partial volume estimation are challenging and rarely voxel-perfect. Diffusion-based segmentation would, thus, potentially allow not to have higher quality anatomical priors injected in the tractography process. On the other hand, even if FA-based tractography is possible without T1 registration, the literature shows that this technique suffers from multiple issues such as holes in the tracking mask and a high proportion of generated broken and anatomically implausible streamlines. Therefore, there is an important need for a tissue segmentation algorithm that works directly in the native diffusion space. We propose DORIS, a DWI-based deep learning segmentation algorithm. DORIS outputs 10 different tissue classes including WM, GM, CSF, ventricles, and 6 other subcortical structures (putamen, pallidum, hippocampus, caudate, amygdala, and thalamus). DORIS was trained and validated on a wide range of subjects, including 1,000 individuals from 22 to 90 years old from clinical and research DWI acquisitions, from 5 public databases. In the absence of a "true" ground truth in diffusion space, DORIS used a silver standard strategy from Freesurfer output registered onto the DWI. This strategy is extensively evaluated and discussed in the current study. Segmentation maps provided by DORIS are quantitatively compared to Freesurfer and FSL-fast and the impacts on tractography are evaluated. Overall, we show that DORIS is fast, accurate, and reproducible and that DORIS-based tractograms produce bundles with a longer mean length and fewer anatomically implausible streamlines.

7.
Front Neurosci ; 15: 665017, 2021.
Article in English | MEDLINE | ID: mdl-34447292

ABSTRACT

OBJECTIVE: To characterize microstructural white matter changes related to relapsing-remitting multiple sclerosis using advanced diffusion MRI modeling and tractography. The association between imaging data and patient's cognitive performance, fatigue severity and depressive symptoms is also explored. METHODS: In this cross-sectional study, 24 relapsing-remitting multiple sclerosis patients and 11 healthy controls were compared using high angular resolution diffusion imaging (HARDI). The imaging method includes a multi-shell scheme, free water correction to obtain tissue-specific measurements, probabilistic tracking algorithm robust to crossing fibers and white matter lesions, automatic streamlines and bundle dissection and tract-profiling with tractometry. The neuropsychological evaluation included the Symbol Digit Modalities Test, Paced Auditory Serial Addition Test, Modified Fatigue Impact Scale and Beck Depression Inventory-II. RESULTS: Bundle-wise analysis by tractometry revealed a difference between patients and controls for 11 of the 14 preselected white matter bundles. In patients, free water corrected fractional anisotropy was significantly reduced while radial and mean diffusivities were increased, consistent with diffuse demyelination. The fornix and left inferior fronto-occipital fasciculus exhibited a higher free water fraction. Eight bundles showed an increase in total apparent fiber density and four bundles had a higher number of fiber orientations, suggesting axonal swelling and increased organization complexity, respectively. In the association study, depressive symptoms were associated with diffusion abnormalities in the right superior longitudinal fasciculus. CONCLUSION: Tissue-specific diffusion measures showed abnormalities along multiple cerebral white matter bundles in patients with relapsing-remitting multiple sclerosis. The proposed methodology combines free-water imaging, advanced bundle dissection and tractometry, which is a novel approach to investigate cerebral pathology in multiple sclerosis. It opens a new window of use for HARDI-derived measures and free water corrected diffusion measures. Advanced diffusion MRI provides a better insight into cerebral white matter changes in relapsing-remitting multiple sclerosis, namely diffuse demyelination, edema and increased fiber density and complexity.

8.
Med Image Anal ; 72: 102126, 2021 08.
Article in English | MEDLINE | ID: mdl-34161915

ABSTRACT

Current brain white matter fiber tracking techniques show a number of problems, including: generating large proportions of streamlines that do not accurately describe the underlying anatomy; extracting streamlines that are not supported by the underlying diffusion signal; and under-representing some fiber populations, among others. In this paper, we describe a novel autoencoder-based learning method to filter streamlines from diffusion MRI tractography, and hence, to obtain more reliable tractograms. Our method, dubbed FINTA (Filtering in Tractography using Autoencoders) uses raw, unlabeled tractograms to train the autoencoder, and to learn a robust representation of brain streamlines. Such an embedding is then used to filter undesired streamline samples using a nearest neighbor algorithm. Our experiments on both synthetic and in vivo human brain diffusion MRI tractography data obtain accuracy scores exceeding the 90% threshold on the test set. Results reveal that FINTA has a superior filtering performance compared to conventional, anatomy-based methods, and the RecoBundles state-of-the-art method. Additionally, we demonstrate that FINTA can be applied to partial tractograms without requiring changes to the framework. We also show that the proposed method generalizes well across different tracking methods and datasets, and shortens significantly the computation time for large (>1 M streamlines) tractograms. Together, this work brings forward a new deep learning framework in tractography based on autoencoders, which offers a flexible and powerful method for white matter filtering and bundling that could enhance tractometry and connectivity analyses.


Subject(s)
Image Processing, Computer-Assisted , White Matter , Algorithms , Brain/diagnostic imaging , Diffusion Tensor Imaging , Humans , White Matter/diagnostic imaging
9.
Elife ; 102021 05 13.
Article in English | MEDLINE | ID: mdl-33983116

ABSTRACT

Beta-amyloid (Aß) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aß or tau accumulates and pathology. We focused on free-water-corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aß-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aß and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , White Matter/ultrastructure , tau Proteins/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Positron-Emission Tomography , White Matter/pathology
10.
Brain Connect ; 11(7): 505-517, 2021 09.
Article in English | MEDLINE | ID: mdl-34018835

ABSTRACT

Background: Mapping diffusion MRI tractography streamlines to the cortical surface facilitates the integration of white matter features onto gray matter, especially for connectivity analysis. Method: In this work, we present methods that combine cortical surface meshes with tractography reconstruction to improve endpoint precision and coverage. This cortical mapping also enables the study of structural measures from tractography along the cortex and subcortical structures. In addition to structural connectivity analysis, novel adaptive and dynamic surface seeding methods are proposed. These improvements are made by incorporating cortical maps such as endpoint density. Results: The proposed dynamic surface seeding increases the cortical coverage and reduces endpoint location biases. Our results suggest that the use of cortical and subcortical meshes together with a proper seeding strategy can reduce the variability in structural connectivity analysis. Conclusion: The proposed adaptive and dynamic seeding utilize cortical maps to better distribute tractography interconnections, thus increasing cortical coverage and reducing endpoint bias. This also facilitates the analysis of white matter & diffusion MRI features along the cortex, combined with cortical measures or functional activation. Impact statement This research presents an overview of surface mapping methods for tractography to reduce structural connectivity variability. The proposed adaptive and dynamic seeding utilize cortical maps to better distribute tractography interconnections, thus increasing cortical coverage and reducing end-point bias. This also facilitates the analysis of white matter and diffusion magnetic resonance imaging features along the cortex, combined with cortical measures or functional activation.


Subject(s)
Brain , White Matter , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , White Matter/diagnostic imaging
11.
Hum Brain Mapp ; 42(10): 3058-3076, 2021 07.
Article in English | MEDLINE | ID: mdl-33835629

ABSTRACT

The ability to perceive speech in noise (SPiN) declines with age. Although the etiology of SPiN decline is not well understood, accumulating evidence suggests a role for the dorsal speech stream. While age-related decline within the dorsal speech stream would negatively affect SPiN performance, experience-induced neuroplastic changes within the dorsal speech stream could positively affect SPiN performance. Here, we investigated the relationship between SPiN performance and the structure of the arcuate fasciculus (AF), which forms the white matter scaffolding of the dorsal speech stream, in aging singers and non-singers. Forty-three non-singers and 41 singers aged 20 to 87 years old completed a hearing evaluation and a magnetic resonance imaging session that included High Angular Resolution Diffusion Imaging. The groups were matched for sex, age, education, handedness, cognitive level, and musical instrument experience. A subgroup of participants completed syllable discrimination in the noise task. The AF was divided into 10 segments to explore potential local specializations for SPiN. The results show that, in carefully matched groups of singers and non-singers (a) myelin and/or axonal membrane deterioration within the bilateral frontotemporal AF segments are associated with SPiN difficulties in aging singers and non-singers; (b) the structure of the AF is different in singers and non-singers; (c) these differences are not associated with a benefit on SPiN performance for singers. This study clarifies the etiology of SPiN difficulties by supporting the hypothesis for the role of aging of the dorsal speech stream.


Subject(s)
Aging/pathology , Frontal Lobe/pathology , Neural Pathways/pathology , Singing , Speech Perception , Temporal Lobe/pathology , White Matter/pathology , Adult , Aged , Aged, 80 and over , Diffusion Magnetic Resonance Imaging , Female , Frontal Lobe/diagnostic imaging , Humans , Male , Middle Aged , Neural Pathways/diagnostic imaging , Practice, Psychological , Speech Perception/physiology , Temporal Lobe/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
12.
J Neurotrauma ; 38(5): 529-537, 2021 03.
Article in English | MEDLINE | ID: mdl-32640880

ABSTRACT

Subconcussive hits to the head and physical fitness both have been associated with alterations in white matter (WM) microstructure in partly overlapping areas of the brain. The aim of the present study was to determine whether WM damage associated with repeated exposure to subconcussive hits to the head in university level contact sports athletes is modulated by high levels of fitness. To this end, 72 students were recruited: 24 athletes practicing a varsity contact sport (A-CS), 24 athletes practicing a varsity non-contact sport (A-NCS), and 24 healthy non-athletes (NA). Participants underwent a magnetic resonance imaging session that included diffusion-weighted imaging. Between-groups, statistical analyses were performed with diffusion tensor imaging measures extracted by tractometry of sections of the corpus callosum and the corticospinal tract. Most significant effects were found in A-NCS who exhibited higher fractional anisotropy (FA) values than A-CS in almost all segments of the corpus callosum and in the corticospinal tract. The A-NCS also showed higher FA compared with NA in the anterior regions of the corpus callosum and the corticospinal tracts. No group difference was found between the A-CS and the NA groups. These data suggest that repeated subconcussive hits to the head lead to anisotropic changes in the WM that may counteract the beneficial effects associated with high levels of fitness.


Subject(s)
Athletic Injuries/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Universities/trends , White Matter/diagnostic imaging , Athletes , Brain/physiology , Brain Concussion/physiopathology , Female , Humans , Male , Physical Fitness/physiology , White Matter/physiology , Young Adult
13.
PLoS One ; 15(11): e0242696, 2020.
Article in English | MEDLINE | ID: mdl-33216815

ABSTRACT

Diffusion MRI is extensively used to investigate changes in white matter microstructure. However, diffusion measures within white matter tissue can be affected by partial volume effects due to cerebrospinal fluid and white matter hyperintensities, especially in the aging brain. In previous aging studies, the cingulum bundle that plays a central role in the architecture of the brain networks supporting cognitive functions has been associated with cognitive deficits. However, most of these studies did not consider the partial volume effects on diffusion measures. The aim of this study was to evaluate the effect of free water elimination on diffusion measures of the cingulum in a group of 68 healthy elderly individuals. We first determined the effect of free water elimination on conventional DTI measures and then examined the effect of free water elimination on verbal fluency performance over 12 years. The cingulum bundle was reconstructed with a tractography pipeline including a white matter hyperintensities mask to limit the negative impact of hyperintensities on fiber tracking algorithms. We observed that free water elimination increased the ability of conventional DTI measures to detect associations between tissue diffusion measures of the cingulum and changes in verbal fluency in older individuals. Moreover, free water content and mean diffusivity measured along the cingulum were independently associated with changes in verbal fluency. This suggests that both tissue modifications and an increase in interstitial isotropic water would contribute to cognitive decline. These observations reinforce the importance of using free water elimination when studying brain aging and indicate that free water itself could be a relevant marker for age-related cingulum white matter modifications and cognitive decline.


Subject(s)
Aging/metabolism , Cognition , Cognitive Dysfunction , Diffusion Tensor Imaging , Water/metabolism , White Matter , Aged, 80 and over , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Female , Humans , Male , White Matter/diagnostic imaging , White Matter/metabolism
14.
Brain Struct Funct ; 225(7): 2203-2218, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32728934

ABSTRACT

While the neural correlates of age-related episodic memory decline have been extensively studied, the precise involvement of the Posterior Cingulate Cortex (PCC) and posterior parietal cortex (the precuneus and the angular gyrus), remains unclear. The present study examined functional and structural neural correlates of age-related episodic memory change assessed over 12 years in 120 older adults (range 76-90 years). Episodic memory performance was measured using the Free and Cued Selective Reminding Test (FCSRT); functional connectivity metrics were computed from resting-state fMRI images and structural connectivity metrics were assessed through microstructural properties of reconstructed tract using a native space pipeline. We found that FCSRT change was significantly associated with the functional connectivity between the ventral PCC and three parietal regions, the ventral superior, the inferior part of the precuneus, and the rostro dorsal part of the angular gyrus. This association was independent of hippocampal volume. In addition, we found the that change in FCSRT scores was associated with fractional anisotropy of the tract connecting the ventral PCC and the ventral superior part of the precuneus. Change in episodic memory in aging was therefore related to a combination of high functional connectivity and low structural connectivity between the ventral PCC and the ventral superior part of the precuneus.


Subject(s)
Aging/psychology , Gyrus Cinguli/diagnostic imaging , Memory, Episodic , Nerve Net/diagnostic imaging , Parietal Lobe/diagnostic imaging , Age Factors , Aged , Aged, 80 and over , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neuropsychological Tests
15.
Neuroimage ; 218: 116889, 2020 09.
Article in English | MEDLINE | ID: mdl-32447016

ABSTRACT

Diffusion MRI tractography processing pipeline requires a large number of steps (typically 20+ steps). If parameters of these steps, number of threads, and random seed generators are not carefully controlled, the resulting tractography can easily be non-reproducible and non-replicable, even in test-test experiments. To handle these issues, we developed TractoFlow. TractoFlow is fully automatic from raw diffusion weighted images to tractography. The pipeline also outputs classical diffusion tensor imaging measures and several fiber orientation distribution function measures. TractoFlow supports the recent Brain Imaging Data Structure (BIDS) format as input and is based on two engines: Nextflow and Singularity. In this work, the TractoFlow pipeline is evaluated on three databases and shown to be efficient and reproducible from 98% to 100%, depending on parameter choices. Moreover, it is easy to use for non-technical users, with little to no installation requirements. TractoFlow is publicly available for academic research and is an important step forward for better structural brain connectivity mapping.


Subject(s)
Brain Mapping/methods , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Software , Humans
16.
Brain Struct Funct ; 225(4): 1413-1436, 2020 May.
Article in English | MEDLINE | ID: mdl-32180019

ABSTRACT

Primary brain tumors are notoriously hard to resect surgically. Due to their infiltrative nature, finding the optimal resection boundary without damaging healthy tissue can be challenging. One potential tool to help make this decision is diffusion-weighted magnetic resonance imaging (dMRI) tractography. dMRI exploits the diffusion of water molecule along axons to generate a 3D modelization of the white matter bundles in the brain. This feature is particularly useful to visualize how a tumor affects its surrounding white matter and plan a surgical path. This paper reviews the different ways in which dMRI can be used to improve brain tumor resection, its benefits and also its limitations. We expose surgical tools that can be paired with dMRI to improve its impact on surgical outcome, such as loading the 3D tractography in the neuronavigation system and direct electrical stimulation to validate the position of the white matter bundles of interest. We also review articles validating dMRI findings using other anatomical investigation techniques, such as postmortem dissections, manganese-enhanced MRI, electrophysiological stimulations, and phantom studies with known ground truth. We will be discussing the areas of the brain where dMRI performs well and where the future challenges are. We will conclude this review with suggestions and take home messages for neurosurgeons, tractographers, and vendors for advancing the field and on how to benefit from tractography's use in clinical practice.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Diffusion Tensor Imaging , Glioma/diagnostic imaging , Glioma/surgery , Neurosurgical Procedures/methods , White Matter/diagnostic imaging , White Matter/surgery , Brain Neoplasms/pathology , Glioma/pathology , Humans , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , Neural Pathways/surgery , Surgery, Computer-Assisted/methods , White Matter/pathology
17.
Hum Brain Mapp ; 41(7): 1859-1874, 2020 05.
Article in English | MEDLINE | ID: mdl-31925871

ABSTRACT

Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection." Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion that if the field of dMRI tractography wants to be taken seriously as a widespread clinical tool, it is imperative to harmonize WM bundle segmentations and develop protocols aimed to be used in clinical settings. The EADC-ADNI Harmonized Hippocampal Protocol achieved such standardization through a series of steps that must be reproduced for every WM bundle. This article is an observation of the problematic. A specific bundle segmentation protocol was used in order to provide a real-life example, but the contribution of this article is to discuss the need for reproducibility and standardized protocol, as for any measurement tool. This study required the participation of 11 experts and 13 nonexperts in neuroanatomy and "virtual dissection" across various laboratories and hospitals. Intra-rater agreement (Dice score) was approximately 0.77, while inter-rater was approximately 0.65. The protocol provided to participants was not necessarily optimal, but its design mimics, in essence, what will be required in future protocols. Reporting tractometry results such as average fractional anisotropy, volume or streamline count of a particular bundle without a sufficient reproducibility score could make the analysis and interpretations more difficult. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction protocols in this era of open and collaborative science.


Subject(s)
Diffusion Tensor Imaging/methods , Anisotropy , Diffusion Magnetic Resonance Imaging , Dissection , Humans , Observer Variation , Reproducibility of Results , White Matter/diagnostic imaging
18.
Neuroimage ; 185: 1-11, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30317017

ABSTRACT

Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Neural Pathways/anatomy & histology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...