Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Protoplasma ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376598

ABSTRACT

Drought stress adversely affects growth, development, productivity, and fiber quality of cotton (Gossypium hirsutum L). Breeding strategies to enhance drought tolerance require an improved knowledge of plant drought responses necessitating proper identification of drought-tolerant genotypes of crops, including cotton. The objective of this study was to classify the selected cotton genotypes for their drought tolerance ability based on morpho-physio-biochemical traits using Hierarchical Ward's cluster analysis. Five genotypes of cotton (Takfa 3, Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5) were selected as plant materials, and were grown under well-watered (WW; 98 ± 2% field capacity) and water-deficit (WD; 50 ± 2% field capacity) conditions for 16 days during the flower initiation stage. Data on morpho-physio-biochemical parameters and gene expression levels for these parameters were collected, and subsequently genotypes were classified either as a drought tolerant or drought susceptible one. Upregulation of GhPRP (proline-rich protein), GhP5CS (Δ1-pyrroline-5-carboxylate synthetase), and GhP5CR (Δ1-pyrroline-5-carboxylate reductase) in relation to free proline enrichment was observed in Takfa 3 genotype under WD condition. An accumulation of free proline, total soluble sugar, and potassium in plants under WD conditions was detected, which played a key role as major osmolytes controlling cellular osmotic potential. Magnesium and calcium concentrations were also enriched in leaves under WD conditions, functioning as essential elements and regulating photosynthetic abilities. Leaf greenness, net photosynthetic rate, stomatal conductance, and transpiration rate were also declined under WD conditions, leading to growth retardation, especially aboveground traits of Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5 genotypes. An increase in leaf temperature (1.1 - 4.0 °C) and crop water stress index (CWSI > 0.75) in relation to stomatal closure and reduced transpiration rate was recorded in cotton genotypes under WD conditions compared with WW conditions. Based on the increase of free proline, soluble sugar, leaf temperature, and CWSI, as well as the decrease of aboveground growth traits and physiological attributes, five genotypes were categorized into two cluster groups: drought tolerant (Takfa 3) and drought susceptible (Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5). The identified drought-tolerant cotton genotype, namely, Takfa 3, may be grown in areas experiencing drought conditions. It is recommended to further validate the yield traits of Takfa 3 under rainfed field conditions in drought-prone environments.

2.
Plant Physiol Biochem ; 202: 107927, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37544120

ABSTRACT

Indian pennywort (Centella asiatica L. Urban; Apiaceae) is a herbaceous plant used as traditional medicine in several regions worldwide. An adequate supply of fresh water in accordance with crop requirements is an important tool for maintaining the productivity and quality of medicinal plants. The objective of this study was to find a suitable irrigation schedule for improving the morphological and physiological characteristics, and crop productivity of Indian pennywort using high-throughput phenotyping. Four treatments were considered based on irrigation schedules (100, 75, 50, and 25% of field capacity denoted by I100 [control], I75, I50, and I25, respectively). The number of leaves, plant perimeter, plant volume, and shoot dry weight were sustained in I75 irrigated plants, whereas adverse effects on plant growth parameters were observed when plants were subjected to I25 irrigation for 21 days. Leaf temperature (Tleaf) was also retained in I75 irrigated plants, when compared with control. An increase of 2.0 °C temperature was detected in the Tleaf of plants under I25 irrigation treatment when compared with control. The increase in Tleaf was attributed to a decreased transpiration rate (R2 = 0.93), leading to an elevated crop water stress index. Green reflectance and leaf greenness remained unchanged in plants under I75 irrigation, while significantly decreased under I50 and I25 irrigation. These decreases were attributed to declined leaf osmotic potential, increased non-photochemical quenching, and inhibition of net photosynthetic rate (Pn). The asiatic acid and total centellosides in the leaf tissues, and centellosides yield of plants under I75 irrigation were retained when compared with control, while these parameters were regulated to maximal when exposed to I50 irrigation. Based on the results, I75 irrigation treatment was identified as the optimum irrigation schedule for Indian pennywort in terms of sustained biomass and a stable total centellosides. However, further validation in the field trials at multiple locations and involving different crop rotations is recommended to confirm these findings.


Subject(s)
Centella , Centella/chemistry , Centella/growth & development , Centella/physiology , Agricultural Irrigation , Biomass , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/physiology , Plant Transpiration , Conservation of Water Resources
3.
Protoplasma ; 260(3): 691-705, 2023 May.
Article in English | MEDLINE | ID: mdl-36056227

ABSTRACT

Nitrogen (N) is an essential nutrient available to the plants in form of nitrate and ammonium. It is a macronutrient important for the plant growth and development, especially in cereal crops, which consume it for the production of amino acids, proteins/enzymes, nucleic acids, cell wall complexes, plant hormones, and vitamins. In rice production, 17 kg N uptake is required to produce 1 ton of rice. Considering this, many techniques have been developed to evaluate leaf greenness or SPAD value for assessing the amount of N application in the rice cultivar to maximize the grain yield. The aim of the present study was to investigate the morpho-physiological characteristics and relative expression level of N assimilation in three different rice genotypes (MT2, RD31, KDML105) under 1.00 × (full N), 0.50 × , 0.25 × (N depletion), and 0.00 × (N deficiency) at seedling stage and the morpho-physiological traits and the grain yield attributes under 1.00 × (full N) and 0.25 × (N depletion) were compared. Leaf chlorosis and growth inhibition in rice seedlings under N deficiency were evidently observed. Shoot height, number of leaves, shoot fresh weight, shoot dry weight, and root fresh weight in KDML105 under N deficiency were decreased by 27.65%, 42.11%, 65.44%, 47.90%, and 54.09% over the control (full N). Likewise, leaf greenness was lowest in KDML105 under N deficiency (78.57% reduction over the full N), leading to low photosynthetic abilities. In addition, expression of nitrogen assimilation-related genes, OsNR1, OsGln1;1, and OsGln2, in KDML105 under N depletion were increased within 3 h and then declined after the long incubation period, whereas those were unchanged in cvs. MT2 and RD31. Similarly, relative expression level of OsNADH-GOGAT, OsFd-GOGAT, and OsAspAt1 in KDML105 was peaked when subjected to 0.50 × N for 6 h and then declined after the long incubation period. Moreover, overall growth characters and physiological changes in cv. RD31 at vegetative stage under 0.25 × N were retained better than those in cvs. KDML105 and MT2, resulting in high yield at the harvesting process. In summary, N assimilated-related genes in rice seedlings under N depletion were rapidly regulated within 3-6 h, especially cv. KDML105 and MT2, then downregulated, resulting in physiological changes, growth inhibition, and yield reduction.


Subject(s)
Oryza , Oryza/genetics , Nitrogen/metabolism , Photosynthesis , Edible Grain/metabolism , Genotype
4.
Front Plant Sci ; 13: 994560, 2022.
Article in English | MEDLINE | ID: mdl-36275605

ABSTRACT

Rice is the staple food for more than half of the world's population. Iron toxicity limits rice production in several regions of the world. Breeding Fe-tolerant rice varieties is an excellent approach to address the problem of Fe toxicity. Rice responds differently to Fe toxicity at different stages. Most QTLs associated with Fe toxicity have been identified at the seedling stage, and there are very few studies on Fe toxicity across different stages. In this study, we investigated agro-morphological and physiological traits in response to Fe toxicity in a rice diversity panel at seedling, vegetative, and reproductive stages and applied GWAS to identify QTLs/genes associated with these traits. Among agro-morphological and physiological parameters, leaf bronzing score (LBS) is a key parameter for determining Fe toxicity response at all stages, and SDW could be a promising parameter at the seedling stage. A total of 29 QTLs were identified on ten chromosomes. Among them, three colocalized QTLs were identified on chromosome 5, 6, and 11. Several QTLs identified in this study overlapped with previously identified QTLs from bi-parental QTL mapping and association mapping. Two genes previously reported to be associated with iron homeostasis were identified, i.e., LOC_Os01g72370 (OsIRO2, OsbHLH056) and LOC_Os04g38570 (OsABCB14). In addition, based on gene-based haplotype analysis, LOC_Os05g16670 was identified as a candidate gene for the colocalized QTL on chromosome 5 and LOC_Os11g18320 was identified as a candidate gene for the colocalized QTL on chromosome 11. The QTLs and candidate genes identified in this study could be useful for rice breeding programs for Fe toxicity tolerance.

5.
Protoplasma ; 259(4): 869-883, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34581924

ABSTRACT

Drought has been identified as a major factor restricting maize productivity worldwide, especially in the rainfed areas. The objective of the present study was to investigate the physiological adaptation strategies and sugar-related gene expression levels in three maize (Zea mays L.) genotypes with different drought tolerance abilities (Suwan4452, drought tolerant as a positive check; S7328, drought susceptible as a negative check; Pac339, drought susceptible) at the seedling stage. Ten-day old seedlings of maize genotypes were subjected to (i) well-watered (WW) or control and (ii) water-deficit (WD) conditions. Leaf osmotic potential of cv. S7328 under WD was significantly decreased by 1.35-1.45 folds compared with cv. Pac339 under WW, whereas it was retained in cv. Suwan4452, which utilized total soluble sugars as the major osmolytes for maintaining leaf greenness, Fv/Fm, ΦPSII, and stomatal function (Pn, net photosynthetic rate; gs, stomatal conductance; and E, transpiration rate). Interestingly, sucrose degradation (65% over the control) in cv. Pac339 under WD was evident in relation to the downregulation of the ZmSPS1 level, whereas glucose enrichment (1.65 folds over the control) was observed in relation to the upregulation of ZmSPS1 and ZmSUS1. Moreover, CWSI (crop water stress index), calculated from leaf temperature of stressed plants, was negatively correlated with E, gs, and Pn. Overall, growth characteristics, aboveground and belowground parts, in the drought-susceptible cv. Pac339 and cv. S7328, were significantly decreased (> 25% over the control), whereas these parameters in the drought-tolerant cv. Suwan4452 were unaffected. The study validates the use of leaf temperature, CWSI, Pn, gs, and E as sensitive parameters and overall growth characters as effective indices for drought tolerance screening in maize genotypes at the seedling stage. However, further experiments are required to validate the results observed in this study under field conditions.


Subject(s)
Seedlings , Zea mays , Dehydration/metabolism , Droughts , Osmoregulation , Seedlings/metabolism , Stress, Physiological , Zea mays/metabolism
6.
Protoplasma ; 257(6): 1595-1606, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32671620

ABSTRACT

Salt stress in the rice field is one of the most common abiotic stresses, reducing crop productivity, especially at reproductive stage, which is very sensitive to salt stress. The aim of this investigation was to study mRNA-related Na+ uptake/translocation and Na+ enrichment in the cellular level, leading to physiological changes, growth characteristics, and yield attributes in FL530 [salt-tolerant genotype; carrying SKC1 (in relation to high-affinity potassium transporters controlling Na+ and K+ translocation) and qSt1b (linking to salt injury score) QTLs] and KDML105 (salt-sensitive cultivar; lacking both QTLs) parental lines and 221-48 (carrying SKC1 and qSt1b QTLs) derived from BILs (backcross introgression lines) at 50% flowering of rice, under 150-mM NaCl until harvesting process. The upregulation of OsHKT1;5 (mediating Na+ exclusion into xylem parenchyma cells) and OsNHX1 (Na+/H+ exchanger to secrete Na+ into vacuole) and downregulation of OsHKT2;1 and OsHKT2;2 (mediating Na+ restriction in the roots, leaf sheath and older leaves) in cvs. FL530 and 221-48 (+ SKC1; + qSt1b) under salt stress were observed. It restricted Na+ level in flag leaf, thereby preventing salt toxicity, as indicated by maintenance of photon yield of PSII (ΦPSII), net photosynthetic rate (Pn), transpiration rate (E) and overall growth performances. In contrast, Na+ enrichment in flag leaf of cv. KDML105 (-SKC1;-qSt1b) caused the reduction in ΦPSII by 30.5% over the control, leading to the reduction in Pn by 62.3%, in seed sterility by 88.2%, and yield loss by 85.1%. Moreover, the negative relationships between Na+ enrichment in flag leaf, physiological changes, and yield traits in rice crop grown under salt stress were demonstrated. Based on this investigation, rice genotype 221-48 was found to possess salt-tolerant traits at reproductive stage and thus could prove to be a potential candidate for future breeding programs.


Subject(s)
Gene Expression Regulation, Plant/genetics , Oryza/chemistry , Salt Stress/physiology , Sodium/metabolism , Homeostasis
7.
Front Plant Sci ; 11: 348, 2020.
Article in English | MEDLINE | ID: mdl-32273880

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) symbionts not only promote the growth of host plant but also alleviate abiotic stresses. This study aimed to investigate the putative role of AMF in salt stress regulation of upland pigmented rice cv. Leum Pua (LP) comparing with Pokkali salt tolerant (positive check). In general, LP is a variety of glutinous rice that contains anthocyanin pigment in the black pericarp, due to which it possesses high antioxidant activities compared to non-pigmented rice. Pot experiment was conducted to evaluate the impact of inoculated AMF, Glomus etunicatum (GE), Glomus geosporum (GG), and Glomus mosseae (GM) strains, in the LP plantlets subjected to 0 (control) or 150 mM NaCl (salt stress) for 2 weeks in comparison with Pokkali (a salt tolerant rice cultivar), which was maintained as a positive check. Root colonization percentage under NaCl conditions ranged from 23 to 30%. Na+ content in the flag leaf tissues was increased to 18-35 mg g-1 DW after exposure to 150 mM NaCl for 14 days in both inoculated and un-inoculated LP plants, whereas Na:K ratio was very low in cv. Pokkali. Interestingly, sucrose content in the flag leaf tissues of un-inoculated LP plants under salt stress was increased significantly by 50 folds over the control as an indicator of salt stress response, whereas it was unchanged in all AMF treatments. Fructose and free proline in GE inoculated plants under salt stress were accumulated over control by 5.75 and 13.59 folds, respectively, for osmotic adjustment of the cell, thereby maintaining the structure and functions of chlorophyll pigments, Fv/Fm, ΦPSII, and stomatal function. Shoot height, flag leaf length, number of panicles, panicle length, panicle weight, and 100-grain weight in GE inoculated plants of cv. LP under salt stress were maintained similar to cv. Pokkali. Interestingly, cyanidin-3-glucoside (C3G) and peonidin-3-glucoside (P3G) in the pericarp of cv. LP were regulated by GE inoculation under salt stress conditions. In summary, AMF-inoculation in rice crop is a successful alternative approach to reduce salt toxicity, maintain the yield attributes, and regulate anthocyanins enrichment in the pericarp of grains.

8.
Physiol Mol Biol Plants ; 26(3): 513-523, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32205927

ABSTRACT

Salt affected soil inhibits plant growth, development and productivity, especially in case of rice crop. Ion homeostasis is a candidate defense mechanism in the salt tolerant plants or halophyte species, where the salt toxic ions are stored in the vacuoles. The aim of this investigation was to determine the OsNHX1 (a vacuolar Na+/H+ exchanger) and OsHKT2;1 (Na+/K+ transporter) regulation by salt stress (200 mM NaCl) in two rice cultivars, i.e. Pokkali (salt tolerant) and IR29 (salt susceptible), the accumulation of Na+ in the root and leaf tissues using CoroNa Green® staining dye and the associated physiological changes in test plants. Na+ content was largely increased in the root tissues of rice seedlings cv. Pokkali (15 min after salt stress) due to the higher expression of OsHKT2;1 gene (by 2.5 folds) in the root tissues. The expression of OsNHX1 gene in the leaf tissues was evidently increased in salt stressed seedlings of Pokkali, whereas it was unchanged in salt stressed seedlings of IR29. Na+ in the root tissues of both Pokkali and IR29 was enriched, when subjected to 200 mM NaCl for 12 h and easily detected in the leaf tissues of salt stressed plants exposed for 24 h, especially in cv. Pokkali. Moreover, the overexpression of OsNHX1 gene regulated the translocation of Na+ from root to leaf tissues, and compartmentation of Na+ into vacuoles, thereby maintaining the photosynthetic abilities in cv. Pokkali. Overall growth performance, maximum quantum yield (Fv/Fm), photon yield of PSII (ΦPSII) and net photosynthetic rate (Pn) was improved in salt stressed leaves of Pokkali than those in salt stressed IR29.

9.
Protoplasma ; 257(1): 197-211, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31407117

ABSTRACT

Drought tolerance in higher plants can result in enhanced productivity, especially in case of carbohydrate storage root crop. Sweet potato has been reported as a drought-tolerant crop, while it is very sensitive to water shortage in the root initiation of cutting propagation and tuber initiation stages. In the present study, we aimed to alleviate the drought-tolerant abilities in sweet potato cv. Tainung 57 (drought-sensitive cultivar) using foliar glycine betaine (GlyBet) application as compared with drought-tolerant cultivar (cv. Japanese Yellow). Leaf osmotic potential in GlyBet applied plants under mild- (25.5% soil water content; SWC) and severe-water deficit (15.5% SWC) stresses was maintained through the accumulation of total soluble sugars as a major osmotic adjustment, thus stabilizing the photosynthetic pigments, chlorophyll fluorescence, net photosynthetic rate, and retaining the overall growth performances, i.e., shoot height, number, and length of leaves. In the harvesting process, storage root weight in water deficit stressed sweet potato cv. Tainung 57 (11.75 g plant-1) with 50 mM GlyBet application was retained in a similar pattern to cv. Japanese Yellow (12.25 g plant-1). In the present investigation, exogenous foliar GlyBet application strongly alleviated water deficit stress via sugar enrichment to control cellular osmotic potential, retain high photosynthetic abilities and maintain the yield of storage root yield. In summary, the regulation on total soluble sugar enrichment in water deficit-stressed sweet potato using GlyBet foliar application may play an important role in maintaining the controlled osmotic potential of leaves, thereby retaining the photosynthetic abilities, overall growth characters and increasing the yield of storage roots.


Subject(s)
Adaptation, Physiological , Betaine/pharmacology , Droughts , Ipomoea batatas/physiology , Plant Leaves/physiology , Sugars/metabolism , Water , Adaptation, Physiological/drug effects , Biomass , Chlorophyll/metabolism , Ipomoea batatas/anatomy & histology , Ipomoea batatas/drug effects , Ipomoea batatas/growth & development , Osmosis , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Plant Roots/drug effects , Proline/metabolism , Solubility
10.
Protoplasma ; 257(2): 525-536, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31807913

ABSTRACT

Sugarcane is a sugar-producing crop widely grown in tropical regions in over 120 countries of the world. Salt-affected soil is one of the most significant abiotic constraints that inhibit growth and crop productivity, and, consequently, reduce sucrose concentration in the stalk. The present study investigated vacuolar ion homeostasis, Na+ accumulation, and physiological and morphological adaptations under salt stress in two different sugarcane genotypes (salt-tolerant K88-92 and salt-sensitive K92-80) under greenhouse conditions. Na+ was rapidly absorbed by the root tissues of both sugarcane genotypes within 3-7 days of 150 mM NaCl treatment, as confirmed by the results of CoroNa Green fluorescence staining. In addition, the rate of Na+ translocation from roots to shoots was evidently reduced, leading to lower amount of Na+ in the leaf tissues. At the cellular level, expression of ShNHX1 (vacuolar Na+/H+ antiporter), ShV-PPase (vacuolar H+-pyrophosphatase), and ShV-ATPase (vacuolar H+-ATPase) was upregulated in salt-stressed plants for the compartmentation of Na+ into the vacuoles of root cells. Interestingly, sucrose, glucose, and fructose in root tissues of salt-stressed sugarcane cv. K88-92 were increased by 10.61, 5.58, and 1.81 folds, respectively, over the control. Total soluble sugars in the roots and free proline in the leaves of sugarcane cv. K88-92 (salt-tolerant) were enriched by 3.08 and 1.99 folds, respectively, when plants were exposed to 150 mM NaCl, leading to maintain better photosynthetic abilities, net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), and water use efficiency (WUE) in sugarcane cv. K88-92 than those in cv. K92-80. The study concludes that Na+ compartmentation in the root tissue acts as a major defense mechanism in sugarcane, especially in salt-tolerant genotype.


Subject(s)
Ions/chemistry , Plant Leaves/chemistry , Plant Proteins/chemistry , Saccharum/chemistry , Vacuoles/chemistry , Genotype , Sodium/metabolism
11.
Physiol Mol Biol Plants ; 25(4): 821-835, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31402812

ABSTRACT

Drought or water deficit is a major abiotic stress that can reduce growth and productivity in the rice crop especially in the rain-fed areas, which face long-term water shortage. The objective of this investigation was to promote the drought tolerant abilities in pigmented rice cv. 'Hom Nil' at booting stage using arbuscular mycorrhizal fungi (AMF)-inoculation, mixed spores of Glomus geosporum, G. etunicatum and G. mosseae in the soil before rice seedling transplantation. At booting stage, the AMF-inoculated (+AMF) and AMF-uninoculated plants (-AMF) were subjected to control (well-watering; 46.6% SWC) and water deficit condition (14 days water withholding; 13.8% SWC). Colonization percentage in the AMF-inoculated root tissues were evidently proved in both with and without water deficit conditions, leading to elevate total phosphorus in root and leaf tissues. Interestingly, sucrose and total soluble sugar concentration in the flag leaf were increased by 5.0 folds and 1.5 folds, respectively in the plants under water deficit (WD). Free proline was accumulated in flag leaf when exposure to water deficit, subsequently regulated by AMF-inoculation. Total soluble sugar and free proline enrichment in 'Hom Nil' was a major mode of osmotic adjustment to control osmotic potential in the cellular level when exposed to water deficit, leading to maintained photosynthetic abilities and growth performances. Concentration of chlorophyll b in AMF-inoculated plants under water deficit stress was retained, causing to improve chlorophyll fluorescence and net photosynthetic rate. Shoot height and number of tillers were significantly declined by 12.5% and 11.6%, respectively, when subjected to WD. At the harvest, grain yield, panicle dry weight and fertility percentage of AMF-inoculated rice from WD were greater than those without AMF by 1.5, 3.9 and 2.4 folds, respectively. Cyanidin-3-glucoside and peonidin-3-glucoside concentrations in pericarp were enriched in the grain derived from AMF-inoculation with water deficit stress. Overall growth characters and physiological adaptations in 'Hom Nil' grown under water deficit condition were retained by AMF inoculation, resulting in enhanced yield attributes and anthocyanin fortification in rice grain.

12.
Protoplasma ; 255(5): 1423-1432, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29574487

ABSTRACT

The plant specific DREPP proteins have been shown to bind Ca2+ and regulate the N-myristoylation signaling and microtubule polymerization in Arabidopsis thaliana. The information about DREPP proteins in other plants is, however, scarce. In the present study, we isolated the DREPP gene from a halophytic grass, Sporobolus virginicus, and tested whether the gene was involved in alkaline salt stress responses. The SvDREPP1 was cloned from S. virginicus by RACE methods. The isolated gene showed high homology to DREPP homologs from C4 grasses, Setaria italica, and Panicum hallii as well as rice (OsDREPP1). The encoded protein contained 202 amino acid residues. It was expressed in E. coli, and its biochemical properties were studied. It was observed that SvDREPP1 was not only Ca2+-binding protein, but also bind to calmodulin and microtubules. The SvDREPP1 mRNA expression in plants grown under alkaline salt stress was upregulated by 3.5 times over the control in leaf tissues after 48-h treatment, whereas it was increased for 6.0 times in the root tissues at 36 h. The data suggests the importance of SvDREPP1 in regulating alkali salt stress responses in the leaf tissues.


Subject(s)
Poaceae/metabolism , Proton-Translocating ATPases/metabolism , Sodium Chloride/pharmacology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Poaceae/drug effects , Proton-Translocating ATPases/genetics , RNA, Messenger/genetics , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/metabolism
13.
Front Plant Sci ; 8: 1400, 2017.
Article in English | MEDLINE | ID: mdl-28848596

ABSTRACT

The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. 'Tainung 57' using a foliar application of paclobutrazol (PBZ). The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control), 17, 34, and 51 µM before exposure to 47.5% (well irrigation), 32.3% (mild water deficit) or 17.5% (severe water deficit) soil water content. A sweet potato cultivar, 'Japanese Yellow', with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose) increased by 3.96-folds in 'Tainung 57' plants treated with 34 µM PBZ grown under 32.3% soil water content (SWC) compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate). In addition, under the same treatment, free proline content (2.15 µmol g-1 FW) increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant-1) at the harvesting stage. A positive relationship between photon yield of PSII (ΦPSII) and net photosynthetic rate was demonstrated (r2 = 0.73). The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield.

14.
Protoplasma ; 254(6): 2305-2313, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28550469

ABSTRACT

The present study investigated the significance of serine biosynthetic genes for salt stress in sugar beet (Beta vulgaris). We isolated a total of four genes, two each encoding D-3-phosphoglycerate dehydrogenase (BvPGDHa and BvPGDHb) and serine hydroxymethyl transferase (BvSHMTa and BvSHMTb). mRNA transcriptional expression for BvPGDHa was significantly enhanced under salt stress conditions in both leaves and roots of sugar beet, whereas it was reduced for BvPGDHb. On the other hand, BvSHMTa was expressed transiently in leaves and roots under salt stress, whereas expression level of BvSHMTb was not altered. PGDH activity was high in storage root. After salt stress, PGDH activity was increased in leaf, petiole, and root. Recombinant proteins were expressed in Escherichia coli. The K m values for 3-phosphoglycerate in PGDHa and PGDHb were 1.38 and 2.92 mM, respectively. The findings suggest that BvPGDHa and BvSHMTa play an important role during salt stress in sugar beet.


Subject(s)
Beta vulgaris/enzymology , Glycine Hydroxymethyltransferase/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Plant Proteins/metabolism , Gene Expression , Glycine Hydroxymethyltransferase/chemistry , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Phosphoglycerate Dehydrogenase/chemistry , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/isolation & purification , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salt Tolerance , Stress, Physiological
15.
Front Plant Sci ; 6: 630, 2015.
Article in English | MEDLINE | ID: mdl-26379678

ABSTRACT

Acacia ampliceps (salt wattle), a leguminous shrub, has been introduced in salt-affected areas in the northeast of Thailand for the remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200-600 mM NaCl). Seedlings of A. ampliceps (25 ± 2 cm in plant height) raised from seeds were treated with 200 mM (mild stress), 400 and 600 mM (extreme stress) of salt treatment (NaCl) under greenhouse conditions. Na(+) and Ca(2+) contents in the leaf tissues increased significantly under salt treatment, whereas K(+) content declined in salt-stressed plants. Free proline and soluble sugar contents in plants grown under extreme salt stress (600 mM NaCl) for 9 days significantly increased by 28.7 (53.33 µmol g(-1) FW) and 3.2 (42.11 mg g(-1) DW) folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na(+) enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll (TC) degradation (R (2) = 0.72). Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl). However, these declined under high levels of salinity (400-600 mM NaCl), consequently resulting in a reduced net photosynthetic rate (R (2) = 0.81) and plant dry weight (R (2) = 0.91). The study concludes that A. ampliceps has an osmotic adjustment and Na(+) compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils.

16.
Protoplasma ; 252(6): 1519-27, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25743039

ABSTRACT

The cytoplasmic free Ca(2+) could play an important role for salt tolerance in rice root (Oryza sativa L.). Here, we compared the expression profiles of two putative developmentally regulated plasma membrane polypeptides (DREPP1 and DREPP2) in rice roots of salt-tolerant cv. Pokkali and salt-sensitive cv. IR29. The messenger RNA (mRNA) for OsDREPP1 could be detected in all parts of root and did not change upon salt stress, whereas the mRNA for OsDREPP2 was detected only in root tips. The transcript level of OsDREPP2 first disappeared upon salt stress, then recovered in Pokkali, but not recovered in IR29. The gene-encoding OsDREPP2 was cloned from cv. Pokkali and expressed in Escherichia coli, and its biochemical properties were studied. It was found that OsDREPP2 is a Ca(2+)-binding protein and binds also to calmodulin (CaM) as well as microtubules. The mutation of Trp4 and Phe16 in OsDREPP2 to Ala decreased the binding of DREPP2 to Ca(2+)/CaM complex, indicating the N-terminal basic domain is involved for the binding. The binding of OsDREPP2 to microtubules was inhibited by Ca(2+)/CaM complex, while the binding of double-mutant OsDREPP2 protein to microtubules was not inhibited by Ca(2+)/CaM complex. We propose that CaM inhibits the binding of DREPP2 to cortical microtubules, causes the inhibition of microtubule depolymerization, and enhances the cell elongation.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Membrane Proteins/metabolism , Meristem/enzymology , Microtubules/metabolism , Oryza/enzymology , Plant Proteins/metabolism , Plants, Genetically Modified/enzymology , Salt Tolerance , Salt-Tolerant Plants/enzymology , Cell Shape , Cloning, Molecular , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genotype , Membrane Proteins/genetics , Meristem/genetics , Meristem/growth & development , Mutation , Oryza/genetics , Oryza/growth & development , Phenotype , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Protein Binding , Protein Interaction Domains and Motifs , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/growth & development , Time Factors
17.
Protoplasma ; 252(1): 231-43, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25012031

ABSTRACT

Sugarcane (Saccharum officinale L.; Poaceae) is a sugar-producing plant widely grown in tropic. Being a glycophytic species, it is very sensitive to salt stress, and salinity severely reduces growth rate and cane yield. The studies investigating the regulation of salt defense metabolite-related genes in relation to final biochemical products in both susceptible and tolerant genotypes of sugarcane are largely lacking. We therefore investigated the expression levels of sugarcane shaggy-like kinase (SuSK), sucrose transporter (SUT), proline biosynthesis (pyrolline-5-carboxylate synthetase; P5CS), ion homeostasis (NHX1), and catalase (CAT2) mRNAs, and contents of Na(+), soluble sugar, and free proline in three sugarcane genotypes (A19 mutant, K88-92, and K92-80) when subjected to salt stress (200 mM NaCl). The relative expression levels of salt defense-related genes in salt-stressed plantlets of sugarcane cv. K88-92 were upregulated in relation to salt exposure times when compared with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as housekeeping gene. In addition, final biochemical products, i.e., low Na(+), sucrose enrichment, and free proline accumulation, were evidently demonstrated in salt-stressed plantlets. Chlorophyll b, total chlorophyll, total carotenoid concentrations, and maximum quantum yield of PSII (F v/F m) in positive check (K88-92) were maintained under salt stress, leading to high net photosynthetic rate (P n) and growth retention (root length, fresh weight, and leaf area). In contrast, photosynthetic abilities in negative check, K92-80, and A19 mutant lines grown under salt stress declined significantly in comparison to control, leading to a reduction in P n and an inhibition of overall growth characters. The study concludes that the genetic background of sugarcane cv. K88-92 may further be exploited to play a key role as parental clone for sugarcane breeding program for salt-tolerant purposes.


Subject(s)
Plant Proteins/chemistry , Saccharum/chemistry , Sodium Chloride/pharmacology , Gene Expression Regulation, Plant , Genotype , Photosynthesis
18.
Pestic Biochem Physiol ; 108: 27-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24485312

ABSTRACT

Application of N-2-(chloro-4-pyridyl)-N-phenyl urea (CPPU) to salt susceptible cultivar of indica rice (cv. PTT1) effected on free proline and soluble sugar accumulation and regulated the physio-morphological responses when subjected to salt stress condition was firstly demonstrated in this study. Soluble sugars, including sucrose, glucose and fructose, in leaf blade and leaf sheath were enriched in 0.1 mM CPPU pretreated plants subsequently exposed to 16.6 dS m(-1) NaCl for 10 days. In the long period (15 days) salt stress, free proline content in the leaf blade and leaf sheath were evidently peaked to act as osmotic adjustment in the salt-stressed plants. In addition, the photosynthetic pigments, including chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids, were maintained by the functional regulation of soluble sugar and free proline in the cellular levels, thereby leading to higher net photosynthetic rate. Further, the stomatal closure and transpiration rate in CPPU pretreated plants were retained under salt stress, thereby resulting in alleviation of growth performance and yield traits. This study suggested that exogenous application of CPPU may alternatively play effective role to improve the salt tolerant abilities of salt susceptible rice crop.


Subject(s)
Carbohydrate Metabolism , Oryza/drug effects , Phenylurea Compounds/pharmacology , Photosynthesis/drug effects , Proline/metabolism , Sodium Chloride/metabolism , Oryza/growth & development , Oryza/physiology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/physiology , Stress, Physiological/drug effects
19.
Protoplasma ; 251(5): 1067-75, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24482191

ABSTRACT

Vacuolar Ca2+-transporters could play an important role for salt tolerance in rice (Oryza sativa L.) root. Here, we compared the expression profiles of putative vacuolar cation/H+ exchanger (CAX) and calmodulin-regulated autoinhibited Ca2+-ATPase (ACA) in rice roots of salt tolerant cv. Pokkali and salt sensitive cv. IR29. In addition to five putative vacuolar CAX genes in the rice genome, a new CAX gene (OsCAX4) has been annotated. In the present study, we isolated the OsCAX4 gene and showed that its encoded protein possesses a unique transmembrane structure and is potentially involved in transporting not only Ca2+ but also Mn2+ and Cu2+. These six OsCAX genes differed in their mRNA expression pattern in roots of tolerant versus sensitive rice cultivars exposed to salt stress. For example, OsCAX4 showed abundant expression in IR29 (sensitive) upon prolonged salt stress. The mRNA expression profile of four putative vacuolar Ca2+-ATPases (OsACA4-7) was also examined. Under control conditions, the mRNA levels of OsACA4, OsACA5, and OsACA7 were relatively high and similar among IR29 and Pokkali. Upon salt stress, only OsACA4 showed first a decrease in its expression in Pokkali (tolerant), followed by a significant increase. Based on these results, a role of vacuolar Ca2+ transporter for salt tolerance in rice root was discussed.


Subject(s)
Antiporters/genetics , Calcium-Transporting ATPases/genetics , Cation Transport Proteins/genetics , Oryza/metabolism , Salt-Tolerant Plants/metabolism , Sodium Chloride/metabolism , Amino Acid Sequence , Antiporters/biosynthesis , Base Sequence , Biological Transport , Calcium/metabolism , Calcium-Transporting ATPases/biosynthesis , Cation Transport Proteins/biosynthesis , Cloning, Molecular , Copper/metabolism , Gene Expression Regulation, Plant , Magnesium/metabolism , Molecular Sequence Data , Oryza/genetics , Plant Roots/metabolism , RNA, Messenger/biosynthesis , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid
20.
Protoplasma ; 250(5): 1157-67, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23558902

ABSTRACT

Soluble carbohydrates play a key role as osmolytes and significantly contribute in salt defence mechanism, especially in halophyte species. The objective of this study is to investigate the transcriptional expression of starch-related genes, sugar profile and physiological performances of two contrasting rice genotypes, Pokkali (salt tolerant) and IR29 (salt sensitive), in response to salt stress. Total soluble sugars, glucose and fructose levels in the flag leaf of salt-stressed Pokkali rice were enhanced relative to soluble starch accumulation in plants exposed to EC = 13.25 dS m(-1) (salt stress) for 3 days. In Pokkali, the net photosynthetic rate and starch metabolism may play a key role as energy resources under salt stress. In contrast, photosynthetic performance, indicated by photosynthetic pigment levels and chlorophyll fluorescence parameters, in salt-stressed IR29 was significantly reduced, leading to delayed starch biosynthesis. The reduction in photosynthetic ability and lack of defence mechanisms in IR29 caused growth inhibition and yield loss. Soluble starch and soluble sugar enrichment in Pokkali rice may function alternatively as osmotic adjustment in salt defence mechanism and strengthen carbon energy reserves, greater survival prospects under salt stress and enhanced productivity.


Subject(s)
Oryza/genetics , Oryza/metabolism , Carbohydrate Metabolism/genetics , Gene Expression Regulation, Plant/drug effects , Genotype , Oryza/drug effects , Osmoregulation , Photosynthesis/drug effects , Photosynthesis/genetics , Sodium Chloride/pharmacology , Starch/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...