Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 72(9): 1962-1969, 2018 09.
Article in English | MEDLINE | ID: mdl-29985525

ABSTRACT

Random asymmetry, that is the coexistence of left- and right-sided (or -handed) individuals within a population, is a particular case of natural variation; what triggers and maintains such dimorphisms remains unknown in most cases. Here, we report a field-based cage experiment in the scale-eating Tanganyikan cichlid Perissodus microlepis, which occurs in two morphs in nature: left-skewed and right-skewed individuals with respect to mouth orientation. Using underwater cages stocked with scale-eaters and natural prey fish, we first confirm that, under semi-natural conditions, left-skewed scale-eaters preferentially attack the right flank of their prey, whereas right-skewed individuals feed predominantly from the left side. We then demonstrate that scale-eaters have a higher probability for successful attacks when kept in dimorphic experimental populations (left- and right-skewed morphs together) as compared to monomorphic populations (left- or right-skewed morphs), most likely because prey fishes fail to accustom to strikes from both sides. The significantly increased probability for attacks appears to be the selective agent responsible for the evolution and maintenance of mouth dimorphism in P. microlepis, lending further support to the hypothesis that negative frequency-dependent selection is the stabilizing force balancing the mouth dimorphism at quasi-equal ratios in scale-eating cichlids.


Subject(s)
Biodiversity , Cichlids/anatomy & histology , Cichlids/physiology , Feeding Behavior , Mouth/anatomy & histology , Mouth/physiology , Animals , Lakes , Tanzania
2.
Evolution ; 71(3): 766-777, 2017 03.
Article in English | MEDLINE | ID: mdl-28052324

ABSTRACT

Male secondary sexual traits are targets of inter- and/or intrasexual selection, but can vary due to a correlation with life-history traits or as by-product of adaptation to distinct environments. Trade-offs contributing to this variation may comprise conspicuousness toward conspecifics versus inconspicuousness toward predators, or between allocating resources into coloration versus the immune system. Here, we examine variation in expression of a carotenoid-based visual signal, anal-fin egg-spots, along a replicate environmental gradient in the haplochromine cichlid fish Astatotilapia burtoni. We quantified egg-spot number, area, and coloration; applied visual models to estimate the trait's conspicuousness when perceived against the surrounding tissue under natural conditions; and used the lymphocyte ratio as a measure for immune activity. We find that (1) males possess larger and more conspicuous egg-spots than females, which is likely explained by their function in sexual selection; (2) riverine fish generally feature fewer but larger and/or more intensely colored egg-spots, which is probably to maintain signal efficiency in intraspecific interactions in long wavelength shifted riverine light conditions; and (3) egg-spot number and relative area correlate with immune defense, suggesting a trade-off in the allocation of carotenoids. Taken together, haplochromine egg-spots feature the potential to adapt to the respective underwater light environment, and are traded off with investment into the immune system.


Subject(s)
Adaptation, Biological , Animal Fins/physiology , Cichlids/physiology , Pigmentation , Animals , Color , Female , Lakes , Male , Rivers , Zambia
3.
Sex Dev ; 10(2): 97-110, 2016.
Article in English | MEDLINE | ID: mdl-27110712

ABSTRACT

Sex steroids are major drivers of sexual development and also responsible for the maintenance of the established gender. Especially fishes exhibit great plasticity and less conservation in sex determination and sexual development compared to other vertebrate groups. In addition, fishes have a constant sex steroid production throughout their entire lifespan, which makes them particularly susceptible to interferences with the endogenous sex steroid system. This susceptibility has recently been used to show that inhibition of the key enzyme of estrogen synthesis, aromatase Cyp19a1, can induce functional sex reversal even in adult fish. Here, we investigated the impact of the aromatase inhibitor (AI) fadrozole in adult females of the East African cichlid fish Astatotilapia burtoni. Using gene expression, phenotypic measurements, behavioral experiments, and hormone measurements, we assessed if females treated with fadrozole develop a male-like phenotype. We found that AI treatment has a different effect on gene expression in the gonad compared to the brain, the 2 tissues mostly implicated in sexual development. In contrast to observations in other gonochoristic species, A. burtoni ovaries cannot be transformed into functional testis by AI. However, rapid changes towards a male-like phenotype can be induced with AI in coloration, hormone levels, and behavior.


Subject(s)
Aromatase/metabolism , Brain/drug effects , Gonadal Steroid Hormones/pharmacology , Gonads/drug effects , Animals , Aromatase Inhibitors/pharmacology , Brain/metabolism , Cichlids , Fadrozole/pharmacology , Gonads/metabolism , Sex Differentiation/drug effects
4.
Biol Lett ; 11(9): 20150521, 2015 09.
Article in English | MEDLINE | ID: mdl-26399975

ABSTRACT

Aggressive mimicry is an adaptive tactic of parasitic or predatory species that closely resemble inoffensive models in order to increase fitness via predatory gains. Although similarity of distantly related species is often intuitively implicated with mimicry, the exact mechanisms and evolutionary causes remain elusive in many cases. Here, we report a complex aggressive mimicry strategy in Plecodus straeleni, a scale-eating cichlid fish from Lake Tanganyika, which imitates two other cichlid species. Employing targeted sequencing on ingested scales, we show that P. straeleni does not preferentially parasitize its models but­contrary to prevailing assumptions­targets a variety of co-occurring dissimilar looking fish species. Combined with tests for visual resemblance and visual modelling from a prey perspective, our results suggest that complex interactions among different cichlid species are involved in this mimicry system.


Subject(s)
Biological Mimicry , Cichlids/physiology , Feeding Behavior/physiology , Predatory Behavior/physiology , Animals , Cichlids/genetics , DNA, Mitochondrial/genetics , Pigmentation/genetics , Pigmentation/physiology , Species Specificity
5.
Mol Ecol ; 23(21): 5304-22, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25256664

ABSTRACT

Divergent natural selection acting in different habitats may build up barriers to gene flow and initiate speciation. This speciation continuum can range from weak or no divergence to strong genetic differentiation between populations. Here, we focus on the early phases of adaptive divergence in the East African cichlid fish Astatotilapia burtoni, which occurs in both Lake Tanganyika (LT) and inflowing rivers. We first assessed the population structure and morphological differences in A. burtoni from southern LT. We then focused on four lake-stream systems and quantified body shape, ecologically relevant traits (gill raker and lower pharyngeal jaw) as well as stomach contents. Our study revealed the presence of several divergent lake-stream populations that rest at different stages of the speciation continuum, but show the same morphological and ecological trajectories along the lake-stream gradient. Lake fish have higher bodies, a more superior mouth position, longer gill rakers and more slender pharyngeal jaws, and they show a plant/algae and zooplankton-biased diet, whereas stream fish feed more on snails, insects and plant seeds. A test for reproductive isolation between closely related lake and stream populations did not detect population-assortative mating. Analyses of F1 offspring reared under common garden conditions indicate that the detected differences in body shape and gill raker length do not constitute pure plastic responses to different environmental conditions, but also have a genetic basis. Taken together, the A. burtoni lake-stream system constitutes a new model to study the factors that enhance and constrain progress towards speciation in cichlid fishes.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Cichlids/genetics , Genetics, Population , Animals , Cichlids/anatomy & histology , DNA, Mitochondrial/genetics , Ecosystem , Lakes , Microsatellite Repeats , Molecular Sequence Data , Phenotype , Phylogeography , Reproductive Isolation , Rivers , Selection, Genetic , Sequence Analysis, DNA
6.
PLoS One ; 7(1): e29878, 2012.
Article in English | MEDLINE | ID: mdl-22242184

ABSTRACT

Color and pigmentation patterns of animals are often targets of sexual selection because of their role in communication. Although conspicuous male traits are typically implicated with intersexual selection, there are examples where sex-specific displays play a role in an intrasexual context, e.g. when they serve as signals for aggression level and/or status. Here, we focus on the function of a conspicuous male ornament in the most species-rich tribe of cichlid fishes, the haplochromines. A characteristic feature of these ca. 1500 species are so-called egg-spots in form of ovoid markings on the anal fins of males, which are made up of carotenoid based pigment cells. It has long been assumed that these yellow, orange or reddish egg-spots play an important role in the courtship and spawning behavior of these maternal mouth-brooding fishes by mimicking the eggs of a conspecific female. The exact function of egg-spots remains unknown, however, and there are several hypotheses about their mode of action. To uncover the function of this cichlid-specific male ornament, we used female mate choice experiments and a male aggression test in the haplochromine species Astatotilapia burtoni. We manipulated the number and arrangement of egg-spots on the anal fins of males, or removed them entirely, and tested (1) female preference with visual contact only using egg-traps, (2) female preference with free contact using paternity testing with microsatellites and (3) male aggression. We found that females did not prefer males with many egg-spots over males with fewer egg-spots and that females tended to prefer males without egg-spots over males with egg-spots. Importantly, males without egg-spots sired clutches with the same fertilization rate as males with egg-spots. In male aggression trials, however, males with fewer egg-spots received significantly more attacks, suggesting that egg-spots are an important signal in intrasexual communication.


Subject(s)
Anal Canal/physiology , Animal Fins/physiology , Cichlids/physiology , Ovum/physiology , Pigmentation/physiology , Aggression/physiology , Animals , Female , Male , Predatory Behavior/physiology
7.
PLoS One ; 6(10): e25601, 2011.
Article in English | MEDLINE | ID: mdl-22028784

ABSTRACT

Although, generally, the origin of sex-limited traits remains elusive, the sensory exploitation hypothesis provides an explanation for the evolution of male sexual signals. Anal fin egg-spots are such a male sexual signal and a key characteristic of the most species-rich group of cichlid fishes, the haplochromines. Males of about 1500 mouth-brooding species utilize these conspicuous egg-dummies during courtship--apparently to attract females and to maximize fertilization success. Here we test the hypothesis that the evolution of haplochromine egg-spots was triggered by a pre-existing bias for eggs or egg-like coloration. To this end, we performed mate-choice experiments in the basal haplochromine Pseudocrenilabrus multicolor, which manifests the plesiomorphic character-state of an egg-spot-less anal fin. Experiments using computer-animated photographs of males indeed revealed that females prefer images of males with virtual ('in-silico') egg-spots over images showing unaltered males. In addition, we tested for color preferences (outside a mating context) in a phylogenetically representative set of East African cichlids. We uncovered a strong preference for yellow, orange or reddish spots in all haplochromines tested and, importantly, also in most other species representing more basal lines. This pre-existing female sensory bias points towards high-quality (carotenoids-enriched) food suggesting that it is adaptive.


Subject(s)
Cichlids/anatomy & histology , Cichlids/genetics , Evolution, Molecular , Pigmentation/genetics , Sexual Behavior, Animal/physiology , Animals , Cichlids/physiology , Discrimination, Psychological , Female , Laboratories , Male
SELECTION OF CITATIONS
SEARCH DETAIL