Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(3): 862-875, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38357862

ABSTRACT

Enzymes are indispensable biocatalysts for numerous industrial applications, yet stability, selectivity, and restricted substrate recognition present limitations for their use. Despite the importance of enzyme engineering in overcoming these limitations, success is often challenged by the intricate architecture of enzymes derived from natural sources. Recent advances in computational methods have enabled the de novo design of simplified scaffolds with specific functional sites. Such scaffolds may be advantageous as platforms for enzyme engineering. Here, we present a strategy for the de novo design of a simplified scaffold of an endo-α-N-acetylgalactosaminidase active site, a glycoside hydrolase from the GH101 enzyme family. Using a combination of trRosetta hallucination, iterative cycles of deep-learning-based structure prediction, and ProteinMPNN sequence design, we designed proteins with 290 amino acids incorporating the active site while reducing the molecular weight by over 100 kDa compared to the initial endo-α-N-acetylgalactosaminidase. Of 11 tested designs, six were expressed as soluble monomers, displaying similar or increased thermostabilities compared to the natural enzyme. Despite lacking detectable enzymatic activity, the experimentally determined crystal structures of a representative design closely matched the design with a root-mean-square deviation of 1.0 Å, with most catalytically important side chains within 2.0 Å. The results highlight the potential of scaffold hallucination in designing proteins that may serve as a foundation for subsequent enzyme engineering.


Subject(s)
Bacterial Proteins , Glycoside Hydrolases , Catalytic Domain , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , alpha-N-Acetylgalactosaminidase/chemistry , alpha-N-Acetylgalactosaminidase/metabolism , Bacterial Proteins/metabolism , Substrate Specificity
2.
Nat Commun ; 15(1): 592, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238333

ABSTRACT

The Arabidopsis thaliana DREB2A transcription factor interacts with the negative regulator RCD1 and the ACID domain of subunit 25 of the transcriptional co-regulator mediator (Med25) to integrate stress signals for gene expression, with elusive molecular interplay. Using biophysical and structural analyses together with high-throughput screening, we reveal a bivalent binding switch in DREB2A containing an ACID-binding motif (ABS) and the known RCD1-binding motif (RIM). The RIM is lacking in a stress-induced DREB2A splice variant with retained transcriptional activity. ABS and RIM bind to separate sites on Med25-ACID, and NMR analyses show a structurally heterogeneous complex deriving from a DREB2A-ABS proline residue populating cis- and trans-isomers with remote impact on the RIM. The cis-isomer stabilizes an α-helix, while the trans-isomer may introduce energetic frustration facilitating rapid exchange between activators and repressors. Thus, DREB2A uses a post-transcriptionally and post-translationally modulated switch for transcriptional regulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Isomerism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Nuclear Proteins/metabolism
3.
Curr Opin Struct Biol ; 83: 102697, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37716093

ABSTRACT

Broad conformational ensembles make intrinsically disordered proteins or regions entropically intriguing. Although methodologically challenging and understudied, emerging studies into their changes in conformational entropy (ΔS°conf) upon complex formation have provided both quantitative and qualitative insight. Recent work based on thermodynamics from isothermal titration calorimetry and NMR spectroscopy uncovers an expanded repertoire of regulatory mechanisms, where ΔS°conf plays roles in partner selection, state behavior, functional buffering, allosteric regulation, and drug design. We highlight these mechanisms to display the large entropic reservoir of IDPs for the regulation of molecular communication. We call upon the field to make efforts to contribute to this insight as more studies are needed for forwarding mechanistic decoding of intrinsically disordered proteins and their complexes.


Subject(s)
Intrinsically Disordered Proteins , Entropy , Intrinsically Disordered Proteins/chemistry , Thermodynamics , Protein Conformation , Magnetic Resonance Spectroscopy
4.
Commun Biol ; 6(1): 63, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653471

ABSTRACT

Transcription depends on complex networks, where folded hub proteins interact with intrinsically disordered transcription factors undergoing coupled folding and binding. For this, local residual structure, a prototypical feature of intrinsic disorder, is key. Here, we dissect the unexplored functional potential of residual structure by comparing structure, kinetics, and thermodynamics within the model system constituted of the DREB2A transcription factor interacting with the αα-hub RCD1-RST. To maintain biological relevance, we developed an orthogonal evolutionary approach for the design of variants with varying amounts of structure. Biophysical analysis revealed a correlation between the amount of residual helical structure and binding affinity, manifested in altered complex lifetime due to changed dissociation rate constants. It also showed a correlation between helical structure in free and bound DREB2A variants. Overall, this study demonstrated how evolution can balance and fine-tune residual structure to regulate complexes in coupled folding and binding, potentially affecting transcription factor competition.


Subject(s)
Protein Folding , Transcription Factors , Protein Binding , Transcription Factors/metabolism
5.
J Biol Chem ; 298(6): 101963, 2022 06.
Article in English | MEDLINE | ID: mdl-35452682

ABSTRACT

Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.


Subject(s)
Arabidopsis Proteins/chemistry , TATA-Binding Protein Associated Factors/chemistry , Transcription Factor TFIID/chemistry , Transcription Factors, TFII/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Humans , Ligands , Nuclear Proteins/metabolism , Protein Binding , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/metabolism , Transcription Factors/metabolism , Transcription Factors, TFII/metabolism
6.
J Am Chem Soc ; 143(36): 14540-14550, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34473923

ABSTRACT

Intrinsic disorder (ID) constitutes a new dimension to the protein structure-function relationship. The ability to undergo conformational changes upon binding is a key property of intrinsically disordered proteins and remains challenging to study using conventional methods. A 1994 paper by R. S. Spolar and M. T. Record presented a thermodynamic approach for estimating changes in conformational entropy based on heat capacity changes, allowing quantification of residues folding upon binding. Here, we adapt the method for studies of intrinsically disordered proteins. We integrate additional data to provide a broader experimental foundation for the underlying relations and, based on >500 protein-protein complexes involving disordered proteins, reassess a key relation between polar and nonpolar surface area changes, previously determined using globular protein folding. We demonstrate the improved suitability of the adapted method to studies of the folded αα-hub domain RST from radical-induced cell death 1, whose interactome is characterized by ID. From extensive thermodynamic data, quantifying the conformational entropy changes upon binding, and comparison to the NMR structure, the adapted method improves accuracy for ID-based studies. Furthermore, we apply the method, in conjunction with NMR, to reveal hitherto undetected effects of interaction-motif context. Thus, inclusion of the disordered context of the DREB2A RST-binding motif induces structuring of the binding motif, resulting in major enthalpy-entropy compensation in the interaction interface. This study, also evaluating additional interactions, demonstrates the strength of the ID-adapted Spolar-Record thermodynamic approach for dissection of structural features of ID-based interactions, easily overlooked in traditional studies, and for translation of these into mechanistic knowledge.


Subject(s)
Arabidopsis Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Entropy , Intrinsically Disordered Proteins/chemistry , Nuclear Proteins/chemistry , Protein Binding , Protein Conformation , Protein Domains , Protein Folding , Transcription Factors/chemistry
7.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371315

ABSTRACT

Eukaryotic cells are complex biological systems that depend on highly connected molecular interaction networks with intrinsically disordered proteins as essential components. Through specific examples, we relate the conformational ensemble nature of intrinsic disorder (ID) in transcription factors to functions in plants. Transcription factors contain large regulatory ID-regions with numerous orphan sequence motifs, representing potential important interaction sites. ID-regions may affect DNA-binding through electrostatic interactions or allosterically as for the bZIP transcription factors, in which the DNA-binding domains also populate ensembles of dynamic transient structures. The flexibility of ID is well-suited for interaction networks requiring efficient molecular adjustments. For example, Radical Induced Cell Death1 depends on ID in transcription factors for its numerous, structurally heterogeneous interactions, and the JAZ:MYC:MED15 regulatory unit depends on protein dynamics, including binding-associated unfolding, for regulation of jasmonate-signaling. Flexibility makes ID-regions excellent targets of posttranslational modifications. For example, the extent of phosphorylation of the NAC transcription factor SOG1 regulates target gene expression and the DNA-damage response, and phosphorylation of the AP2/ERF transcription factor DREB2A acts as a switch enabling heat-regulated degradation. ID-related phase separation is emerging as being important to transcriptional regulation with condensates functioning in storage and inactivation of transcription factors. The applicative potential of ID-regions is apparent, as removal of an ID-region of the AP2/ERF transcription factor WRI1 affects its stability and consequently oil biosynthesis. The highlighted examples show that ID plays essential functional roles in plant biology and has a promising potential in engineering.


Subject(s)
Gene Expression Regulation, Plant , Intrinsically Disordered Proteins/metabolism , Plant Proteins/metabolism , Plants/metabolism , Protein Processing, Post-Translational , Transcription Factors/metabolism , Intrinsically Disordered Proteins/genetics , Transcription Factors/genetics
8.
Biochem J ; 474(15): 2509-2532, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28701416

ABSTRACT

Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from 'negative noodles' to ID regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions. It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms and structural analysis of ID in the context of full-length TFs and suggests future directions for research in TF ID.


Subject(s)
Eukaryota/metabolism , Intrinsically Disordered Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Humans , Intrinsically Disordered Proteins/chemistry , Kinetics , Protein Processing, Post-Translational , Thermodynamics , Transcription Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...