Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Photochem Photobiol ; 11: 100123, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36034107

ABSTRACT

Microorganisms pose a serious threat for us humans, which is exemplified by the recent emergence of pathogens such as SARS-CoV-2 or the increasing number of multi-resistant pathogens such as MRSA. To control surface microorganisms and viruses, we investigated the disinfection properties of an AI-controlled robot, HERO21, equipped with eight 130-W low pressure UV-C mercury vapor discharge lamps emitting at a wavelength of 254 nm, which is strongly absorbed by DNA and RNA, thus inactivating illuminated microorganisms. Emissivity and spatial irradiance distribution of a single UV-C lamp unit was determined using a calibrated spectrometer and numerical simulation, respectively. The disinfection efficiency of single lamps is determined by microbiological tests using B. subtilis spores, which are known to be UV-C resistant. The required time for D99 disinfection and the corresponding UV-C irradiance dose amount to 60 s and 37.3 mJ•cm-2 at a distance of 1 m to the Hg-lamp, respectively. Spatially resolved irradiance produced by a disinfection unit consisting of eight lamps is calculated using results of one UV-C lamp characterization. This calculation shows that the UV-C robot HERO21 equipped with the mentioned UV-C unit causes an irradiance at λ=254 nm of 2.67 mJ•cm-2•s-1 at 1 m and 0.29 mJ•cm-2•s-1 at 3 m distances. These values result in D99 disinfection times of 14 s and 129 s for B. subtilis spores, respectively. Similarly, human coronavirus 229E, structurally very similar to SARS-CoV-2, could be efficiently inactivated by 3-5 orders of magnitude within 10 - 30 s exposure time or doses of 2 - 6 mJ•cm-2, respectively. In conclusion, with the development of the HERO21 disinfection robot, we were able to determine the inactivation efficiency of bacteria and viruses on surfaces under laboratory conditions.

2.
Langmuir ; 35(50): 16514-16520, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31697085

ABSTRACT

Next-generation surfactants provide extended functionality apart from their amphiphilic properties. We present two novel metallosurfactants characterized by an N-heterocyclic carbene (NHC) head bearing Cu(I) and Fe(II). An innovative approach for their application in emulsion polymerizations under atom transfer radical polymerization (ATRP) conditions was developed. Thereby the complexes fulfilled the role of emulsifiers, active catalysts, and stabilization agents at once. Polymerization of methyl methacrylate (MMA) yielded stable poly(methyl methacrylate) (PMMA) colloids in water with the catalyst located at the surface of the colloids. The termination of PMMA with a bromine moiety enabled the subsequent copolymerization with styrene via macroinitiation and PMMA-polystyrene (PS) core-shell particles were obtained. Gel permeation chromatography (GPC) and selective gradient NMR experiments revealed a covalent linkage between the PMMA core and the PS shell.

3.
ACS Appl Mater Interfaces ; 11(17): 15936-15944, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30950261

ABSTRACT

The maximization of activity is a general aim in catalysis research. The possibility for light-triggered enhancement of a catalytic process, even if the process is not photochemical in nature, represents an intriguing concept. Here, we present a novel system for the exploration of the latter idea. A surfactant with a catalytically active head group, a protonated polyoxometalate (POM) cluster, is attached to the surface of a gold nanoparticle (Au NP) using thiol coupling chemistry. The distance of the catalytically active center to the gold surface could be adjusted precisely using surfactants containing hydrocarbon chains (C n) of different lengths ( n = 4-10). Radiation with VIS-light has no effect on the catalytic activity of micellar aggregates of the surfactant. The situation changes, as soon as the surfactants have been attached to the Au NPs. The catalytic activity could almost be doubled. It was proven that the effect is caused by coupling the surface plasmon resonance of the Au NPs with the properties of the POM head group. The improvement of activity could only be observed if the excitation wavelength matches the absorption band of the used Au NPs. Furthermore, the shorter the distance between the POM group and the surface of the NP, the stronger is the effect. This phenomenon was explained by lowering the activation energy of the transition state relevant to the catalytic process by the strong electric fields in the vicinity of the surfaces of plasmonic nanoparticles. Because the catalytic enhancement is wavelength-selective, one can imagine the creation of complex systems in the future, a system of differently sized NPs, each responsible for a different catalytic step and activated by light of different colors.

SELECTION OF CITATIONS
SEARCH DETAIL
...