Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(45): 11608-11612, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30348794

ABSTRACT

Flaviviruses assemble initially in an immature, noninfectious state and undergo extensive conformational rearrangements to generate mature virus. Previous cryo-electron microscopy (cryo-EM) structural studies of flaviviruses assumed icosahedral symmetry and showed the concentric organization of the external glycoprotein shell, the lipid membrane, and the internal nucleocapsid core. We show here that when icosahedral symmetry constraints were excluded in calculating the cryo-EM reconstruction of an immature flavivirus, the nucleocapsid core was positioned asymmetrically with respect to the glycoprotein shell. The core was positioned closer to the lipid membrane at the proximal pole, and at the distal pole, the outer glycoprotein spikes and inner membrane leaflet were either perturbed or missing. In contrast, in the asymmetric reconstruction of a mature flavivirus, the core was positioned concentric with the glycoprotein shell. The deviations from icosahedral symmetry demonstrated that the core and glycoproteins have varied interactions, which likely promotes viral assembly and budding.


Subject(s)
Glycoproteins/chemistry , Nucleocapsid/ultrastructure , Viral Envelope Proteins/chemistry , West Nile virus/ultrastructure , Zika Virus/ultrastructure , Animals , Chlorocebus aethiops , Cryoelectron Microscopy , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Vero Cells , Virus Assembly/physiology , Virus Release/physiology
2.
Bioorg Med Chem Lett ; 25(22): 5072-7, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26592814

ABSTRACT

Feline infectious peritonitis (FIP) is a deadly disease that effects both domestic and wild cats and is caused by a mutation in feline coronavirus (FCoV) that allows the virus to replicate in macrophages. Currently, there are no treatments or vaccines available for the treatment of FIP even though it kills approximately 5% of cats in multi-cat households per year. In an effort to develop small molecule drugs targeting FIP for the treatment of cats, we screened a small set of designed peptidomimetic inhibitors for inhibition of FIPV-3CL(pro), identifying two compounds with low to sub-micromolar inhibition, compound 6 (IC50=0.59±0.06 µM) and compound 7 (IC50=1.3±0.1 µM). We determined the first X-ray crystal structure of FIPV-3CL(pro) in complex with the best inhibitor identified, compound 6, to a resolution of 2.10 Å to better understand the structural basis for inhibitor specificity. Our study provides important insights into the structural requirements for the inhibition of FIPV-3CL(pro) by peptidomimetic inhibitors and expands the current structural knowledge of coronaviral 3CL(pro) architecture.


Subject(s)
Antiviral Agents/chemical synthesis , Coronavirus, Feline/enzymology , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Oligopeptides/chemical synthesis , Peptidomimetics/chemical synthesis , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemistry , Drug Design , Escherichia coli , Hydrogen Bonding , Kinetics , Models, Molecular , Oligopeptides/chemistry , Peptidomimetics/chemistry
3.
Cell ; 161(5): 1026-1034, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25959776

ABSTRACT

Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by 11 different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B cell targets.


Subject(s)
Antibodies, Viral/chemistry , Receptors, Virus/chemistry , Amino Acid Sequence , Antibodies, Viral/immunology , Complementarity Determining Regions , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Influenza Vaccines/immunology , Models, Molecular , Molecular Mimicry , Molecular Sequence Data
4.
Mol Phylogenet Evol ; 86: 1-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25743182

ABSTRACT

Ichthyophthirius multifiliis is the etiologic agent of "white spot", a commercially important disease of freshwater fish. As a parasitic ciliate, I. multifiliis infects numerous host species across a broad geographic range. Although Ichthyophthirius outbreaks are difficult to control, recent sequencing of the I. multifiliis genome has revealed a number of potential metabolic pathways for therapeutic intervention, along with likely vaccine targets for disease prevention. Nonetheless, major gaps exist in our understanding of both the life cycle and population structure of I. multifiliis in the wild. For example, conjugation has never been described in this species, and it is unclear whether I. multifiliis undergoes sexual reproduction, despite the presence of a germline micronucleus. In addition, no good methods exist to distinguish strains, leaving phylogenetic relationships between geographic isolates completely unresolved. Here, we compared nucleotide sequences of SSUrDNA, mitochondrial NADH dehydrogenase subunit I and cox-1 genes, and 14 somatic SNP sites from nine I. multifiliis isolates obtained from four different states in the US since 1995. The mitochondrial sequences effectively distinguished the isolates from one another and divided them into at least two genetically distinct groups. Furthermore, none of the nine isolates shared the same composition of the 14 somatic SNP sites, suggesting that I. multifiliis undergoes sexual reproduction at some point in its life cycle. Finally, compared to the well-studied free-living ciliates Tetrahymena thermophila and Paramecium tetraurelia, I. multifiliis has lost 38% and 29%, respectively, of 16 experimentally confirmed conjugation-related genes, indicating that mechanistic differences in sexual reproduction are likely to exist between I. multifiliis and other ciliate species.


Subject(s)
Fishes/parasitology , Hymenostomatida/classification , Phylogeny , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Hymenostomatida/genetics , Likelihood Functions , Models, Genetic , Polymorphism, Single Nucleotide , Reproduction/genetics , Sequence Analysis, DNA , United States
5.
Proteins ; 83(4): 771-80, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25524709

ABSTRACT

Affinity maturation, the process in which somatic hypermutation and positive selection generate antibodies with increasing affinity for an antigen, is pivotal in acquired humoral immunity. We have studied the mechanism of affinity gain in a human B-cell lineage in which two main maturation pathways, diverging from a common ancestor, lead to three mature antibodies that neutralize a broad range of H1 influenza viruses. Previous work showed that increased affinity in the mature antibodies derives primarily from stabilization of the CDR H3 loop in the antigen-binding conformation. We have now used molecular dynamics simulations and existing crystal structures to identify potentially key maturation mutations, and we have characterized their effects on the CDR H3 loop and on antigen binding using further simulations and experimental affinity measurements, respectively. In the two maturation pathways, different contacts between light and heavy chains stabilize the CDR H3 loop. As few as two single-site mutations in each pathway can confer substantial loop stability, but none of them confers experimentally detectable stability on its own. Our results support models of the germinal center reaction in which two or more mutations can occur without concomitant selection and show how divergent pathways have yielded functionally equivalent antibodies.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Binding Sites, Antibody/physiology , Mutation/physiology , Amino Acid Sequence , Humans , Influenza A virus/immunology , Kinetics , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...