Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 86(8): 1960-1967, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37530540

ABSTRACT

The roots of Fibraurea recisa are recognized as a rich source of protoberberine and aporphine alkaloids, but the non-alkaloidal metabolites in this plant are underexplored. The present study investigated the chemical composition of the plant roots using untargeted metabolomics-based molecular networking and MS2LDA motif annotation, revealing the presence of a characteristic fragment motif related to several sinapoyl-functionalized metabolites. Guided by the targeted motif, two new sinapic acid-ecdysteroid hybrids, named 3-O-sinapoyl makisterone A (1) and 2-O-sinapoyl makisterone A (2), were isolated. The structures of these compounds, including their absolute configuration, were elucidated by HR-ESIQTOFMS, MS2 fragmentation, NMR spectroscopy, and chemical degradation coupled with optical rotation measurements. Although neither compound inhibited nitric oxide (NO) production or inducible nitric oxide synthase (iNOS) protein expression on lipopolysaccharide-induced RAW 264 cells, 2 significantly suppressed cyclooxygenase 2 (COX-2) protein expression at 1-30 µM. Additionally, decreased expression of COX-2 protein was barely observed after treatment with methyl sinapate or makisterone A, the steroid skeleton of 1 and 2. These results indicated that the presence of the sinapoyl moiety at C-2 on the C28-ecdysteroid skeleton played a key role in the selectivity for the suppression of the COX-2 protein expression.


Subject(s)
Cyclooxygenase 2 Inhibitors , Ecdysteroids , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Ecdysteroids/pharmacology , Esters , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide , Lipopolysaccharides/pharmacology
2.
Phytochemistry ; 202: 113322, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35839858

ABSTRACT

With the aid of a feature-based molecular networking strategy, five undescribed C2 and C1 symmetric chromene dimers, namely, melptelchromenes A-E, were isolated from the leaves of Melicope pteleifolia. Four asymmetric dimers were found to be racemates and were resolved by chiral phase HPLC analyses. Their structures, including absolute configurations, were elucidated by HRMS, NMR spectroscopy, and quantum mechanical calculations of ECD spectra and NMR chemical shifts. Melptelchromenes A-D possess a unique ethylidene linkage via two 2H-chromene cores, while melptelchromene E represents the first example of a dimeric chromene featuring a 1,3-diarylbutan-1-ol moiety. Of these compounds, 6,6'-linked dimeric chromenes showed nitric oxide inhibitory activities on lipopolysaccharide-induced RAW 264 cells, and (-)- and (+)-melptelchromene E were the two most potent compounds (IC50, 3.0 and 5.1 µM, respectively).


Subject(s)
Rutaceae , Anti-Inflammatory Agents/pharmacology , Benzopyrans/chemistry , Molecular Structure , Nitric Oxide , Plant Leaves/chemistry , Rutaceae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...