Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 35(5): 912-921, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38535992

ABSTRACT

Structure-based drug design, which relies on precise understanding of the target protein and its interaction with the drug candidate, is dramatically expedited by advances in computational methods for candidate prediction. Yet, the accuracy needs to be improved with more structural data from high throughput experiments, which are challenging to generate, especially for dynamic and weak associations. Herein, we applied native mass spectrometry (native MS) to rapidly characterize ligand binding of an allosteric heterodimeric complex of SARS-CoV-2 nonstructural proteins (nsp) nsp10 and nsp16 (nsp10/16), a complex essential for virus survival in the host and thus a desirable drug target. Native MS showed that the dimer is in equilibrium with monomeric states in solution. Consistent with the literature, well characterized small cosubstrate, RNA substrate, and product bind with high specificity and affinity to the dimer but not the free monomers. Unsuccessfully designed ligands bind indiscriminately to all forms. Using neutral gas collision, the nsp16 monomer with bound cosubstrate can be released from the holo dimer complex, confirming the binding to nsp16 as revealed by the crystal structure. However, we observed an unusual migration of the endogenous zinc ions bound to nsp10 to nsp16 after collisional dissociation. The metal migration can be suppressed by using surface collision with reduced precursor charge states, which presumably resulted in minimal gas-phase structural rearrangement and highlighted the importance of complementary techniques. With minimal sample input (∼µg), native MS can rapidly detect ligand binding affinities and locations in dynamic multisubunit protein complexes, demonstrating the potential of an "all-in-one" native MS assay for rapid structural profiling of protein-to-AI-based compound systems to expedite drug discovery.


Subject(s)
Mass Spectrometry , Methyltransferases , Protein Multimerization , SARS-CoV-2 , Viral Nonstructural Proteins , Viral Regulatory and Accessory Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , SARS-CoV-2/chemistry , Mass Spectrometry/methods , Allosteric Regulation , Protein Binding , Humans , Ligands , Models, Molecular
2.
J Am Soc Mass Spectrom ; 34(7): 1528-1531, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37291876

ABSTRACT

High throughput native mass spectrometry analysis of proteins and protein complexes has been enabled by recent development of infusion and liquid chromatography (LC) systems, which often include complete LC pumps without fully utilizing their gradient flows. We demonstrated a lower-cost infusion cart for native mass spectrometry applications using a single isocratic solvent pump that can operate at both nano- and high-flow configurations (0.05-150 µL/min) for both infusion and online buffer exchange experiments. The platform is controlled via open-source software and can potentially be expanded for customized experimental designs, offering a lower cost alternative to laboratories with limited budgets and/or needs in student training.


Subject(s)
Proteins , Software , Humans , Mass Spectrometry/methods , Chromatography, Liquid
3.
Mol Cell Proteomics ; 18(10): 2121-2137, 2019 10.
Article in English | MEDLINE | ID: mdl-31324658

ABSTRACT

Exposure of blood plasma/serum (P/S) to thawed conditions (> -30 °C) can produce biomolecular changes that skew measurements of biomarkers within archived patient samples, potentially rendering them unfit for molecular analysis. Because freeze-thaw histories are often poorly documented, objective methods for assessing molecular fitness before analysis are needed. We report a 10-µl, dilute-and-shoot, intact-protein mass spectrometric assay of albumin proteoforms called "ΔS-Cys-Albumin" that quantifies cumulative exposure of archived P/S samples to thawed conditions. The relative abundance of S-cysteinylated (oxidized) albumin in P/S increases inexorably but to a maximum value under 100% when samples are exposed to temperatures > -30 °C. The difference in the relative abundance of S-cysteinylated albumin (S-Cys-Alb) before and after an intentional incubation period that drives this proteoform to its maximum level is denoted as ΔS-Cys-Albumin. ΔS-Cys-Albumin in fully expired samples is zero. The range (mean ± 95% CI) observed for ΔS-Cys-Albumin in fresh cardiac patient P/S (n = 97) was, for plasma 12-29% (20.9 ± 0.75%) and for serum 10-24% (15.5 ± 0.64%). The multireaction rate law that governs S-Cys-Alb formation in P/S was determined and shown to predict the rate of formation of S-Cys-Alb in plasma and serum samples-a step that enables back-calculation of the time at which unknown P/S specimens have been exposed to room temperature. A blind challenge demonstrated that ΔS-Cys-Albumin can detect exposure of groups (n = 6 each) of P/S samples to 23 °C for 2 h, 4 °C for 16 h, or -20 °C for 24 h-and exposure of individual specimens for modestly increased times. An unplanned case study of nominally pristine serum samples collected under NIH-sponsorship demonstrated that empirical evidence is required to ensure accurate knowledge of archived P/S biospecimen storage history.


Subject(s)
Biomarkers/analysis , Plasma/chemistry , Serum/chemistry , Cysteine/chemistry , Freezing , Humans , Mass Spectrometry , Serum Albumin/chemistry
4.
Proc Natl Acad Sci U S A ; 111(23): E2376-83, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24912189

ABSTRACT

The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution. Here, using computational methods to predict coevolving residues, we identify a network of positions consisting of two catalytic metal-binding residues and two adjacent noncatalytic residues in LAGLIDADG homing endonucleases (LHEs). Distinct combinations of the four residues in the network map to distinct LHE subfamilies, with a striking distribution of the metal-binding Asp (D) and Glu (E) residues. Mutation of these four positions in three LHEs--I-LtrI, I-OnuI, and I-HjeMI--indicate that the combinations of residues tolerated are specific to each enzyme. Kinetic analyses under single-turnover conditions revealed that I-LtrI activity could be modulated over an ∼100-fold range by mutation of residues in the coevolving network. I-LtrI catalytic site variants with low activity could be rescued by compensatory mutations at adjacent noncatalytic sites that restore an optimal coevolving network and vice versa. Our results demonstrate that LHE activity is constrained by an evolutionary barrier of residues with strong context-dependent effects. Creation of optimal coevolving active-site networks is therefore an important consideration in engineering of LHEs and other enzymes.


Subject(s)
Catalytic Domain/genetics , Endonucleases/genetics , Evolution, Molecular , Mutation , Aspartic Acid/chemistry , Aspartic Acid/genetics , Aspartic Acid/metabolism , Binding Sites/genetics , Biocatalysis , Endonucleases/chemistry , Endonucleases/metabolism , Glutamic Acid/chemistry , Glutamic Acid/genetics , Glutamic Acid/metabolism , Models, Genetic , Models, Molecular , Phylogeny , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL