Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 8423, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38110410

ABSTRACT

After Mycobacterium tuberculosis (Mtb) infection, many effector T cells traffic to the lungs, but few become activated. Here we use an antigen receptor reporter mouse (Nur77-GFP) to identify recently activated CD4 T cells in the lungs. These Nur77-GFPHI cells contain expanded TCR clonotypes, have elevated expression of co-stimulatory genes such as Tnfrsf4/OX40, and are functionally more protective than Nur77-GFPLO cells. By contrast, Nur77-GFPLO cells express markers of terminal exhaustion and cytotoxicity, and the trafficking receptor S1pr5, associated with vascular localization. A short course of immunotherapy targeting OX40+ cells transiently expands CD4 T cell numbers and shifts their phenotype towards parenchymal protective cells. Moreover, OX40 agonist immunotherapy decreases the lung bacterial burden and extends host survival, offering an additive benefit to antibiotics. CD4 T cells from the cerebrospinal fluid of humans with HIV-associated tuberculous meningitis commonly express surface OX40 protein, while CD8 T cells do not. Our data thus propose OX40 as a marker of recently activated CD4 T cells at the infection site and a potential target for immunotherapy in tuberculosis.


Subject(s)
CD4-Positive T-Lymphocytes , Tuberculosis , Humans , Mice , Animals , Receptors, OX40/agonists , CD8-Positive T-Lymphocytes , Immunotherapy , Tuberculosis/therapy
2.
Chemistry ; 28(51): e202200995, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35697660

ABSTRACT

Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic-resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. ß-lactam antibiotics have traditionally been ineffective against M. tuberculosis (Mtb), the causative agent of TB, due to the organism's inherent expression of ß-lactamases that destroy the electrophilic ß-lactam warhead. We have developed novel ß-lactam conjugates, which exploit this inherent ß-lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first-line TB drug. These conjugates are selectively active against M. tuberculosis and related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA "warhead" as well as the ß-lactam "promoiety" contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Humans , Microbial Sensitivity Tests , Pyrazinamide/analogs & derivatives , Pyrazinamide/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology , beta-Lactams/pharmacology
3.
Nat Commun ; 12(1): 7325, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916516

ABSTRACT

Single-domain Variable New Antigen Receptors (VNARs) from the immune system of sharks are the smallest naturally occurring binding domains found in nature. Possessing flexible paratopes that can recognize protein motifs inaccessible to classical antibodies, VNARs have yet to be exploited for the development of SARS-CoV-2 therapeutics. Here, we detail the identification of a series of VNARs from a VNAR phage display library screened against the SARS-CoV-2 receptor binding domain (RBD). The ability of the VNARs to neutralize pseudotype and authentic live SARS-CoV-2 virus rivalled or exceeded that of full-length immunoglobulins and other single-domain antibodies. Crystallographic analysis of two VNARs found that they recognized separate epitopes on the RBD and had distinctly different mechanisms of virus neutralization unique to VNARs. Structural and biochemical data suggest that VNARs would be effective therapeutic agents against emerging SARS-CoV-2 mutants, including the Delta variant, and coronaviruses across multiple phylogenetic lineages. This study highlights the utility of VNARs as effective therapeutics against coronaviruses and may serve as a critical milestone for nearing a paradigm shift of the greater biologic landscape.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Crystallography, X-Ray , Receptors, Antigen/chemistry , Receptors, Antigen/immunology , Sharks/immunology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Epitopes , Mutation , Phylogeny , Protein Binding , SARS-CoV-2 , Sequence Alignment , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus/immunology
4.
J Immunol ; 207(2): 376-379, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34193597

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing Abs target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with a human adenovirus type 5 vector expressing the SARS-CoV-2 nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and K18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral Ags in SARS-CoV-2 vaccines, even if they are not a target of neutralizing Abs, to broaden epitope coverage and immune effector mechanisms.


Subject(s)
Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Immunologic Memory/immunology , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Phosphoproteins/immunology , Vaccination , Vero Cells
5.
bioRxiv ; 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33948591

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing antibodies target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with HAd5 expressing the nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and k18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral antigens, even if they are not a target of neutralizing antibodies, to broaden epitope coverage and immune effector mechanisms.

6.
PLoS Pathog ; 17(1): e1009292, 2021 01.
Article in English | MEDLINE | ID: mdl-33507952

ABSTRACT

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/physiology , Viral Tropism , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , COVID-19/genetics , Epithelium/immunology , Epithelium/virology , Humans , Interferons/genetics , Interferons/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lung/immunology , Lung/virology , SARS-CoV-2/drug effects , Viral Tropism/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
7.
J Infect Dis ; 223(8): 1339-1344, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33476387

ABSTRACT

Coronavirus disease 2019 (COVID-19) outcomes are linked to host immune responses and may be affected by antiviral therapy. We investigated antibody and cytokine responses in ACTT-1 study participants enrolled at our center. We studied serum specimens from 19 hospitalized adults with COVID-19 randomized to treatment with remdesivir or placebo. We assessed severe acute respiratory syndrome coronavirus 2 antibody responses and identified cytokine signatures, using hierarchical clustering. We identified no clear immunologic trends attributable to remdesivir treatment. Seven participants were initially seronegative at study enrollment, and all 4 deaths occurred in this group with more recent symptom onset. We identified 3 dominant cytokine signatures, demonstrating different disease trajectories.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Immunity/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/immunology , Adenosine Monophosphate/therapeutic use , Adult , Alanine/analogs & derivatives , Alanine/immunology , Alanine/therapeutic use , Antibodies, Viral/immunology , Antiviral Agents/immunology , Antiviral Agents/therapeutic use , COVID-19/virology , Cytokines/immunology , Female , Humans , Immunity/drug effects , Male , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , COVID-19 Drug Treatment
8.
mBio ; 13(1): e0043921, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35100871

ABSTRACT

Pyrazinamide (PZA) plays a crucial role in first-line tuberculosis drug therapy. Unlike other antimicrobial agents, PZA is active against Mycobacterium tuberculosis only at low pH. The basis for this conditional drug susceptibility remains undefined. In this study, we utilized a genome-wide approach to interrogate potentiation of PZA action. We found that mutations in numerous genes involved in central metabolism as well as cell envelope maintenance and stress response are associated with PZA resistance. Further, we demonstrate that constitutive activation of the cell envelope stress response can drive PZA susceptibility independent of environmental pH. Consequently, exposure to peptidoglycan synthesis inhibitors, such as beta-lactams and d-cycloserine, potentiate PZA action through triggering this response. These findings illuminate a regulatory mechanism for conditional PZA susceptibility and reveal new avenues for enhancing potency of this important drug through targeting activation of the cell envelope stress response. IMPORTANCE For decades, pyrazinamide has served as a cornerstone of tuberculosis therapy. Unlike any other antitubercular drug, pyrazinamide requires an acidic environment to exert its action. Despite its importance, the driver of this conditional susceptibility has remained unknown. In this study, a genome-wide approach revealed that pyrazinamide action is governed by the cell envelope stress response. This observation was validated by orthologous approaches that demonstrate that a central player of this response, SigE, is both necessary and sufficient for potentiation of pyrazinamide action. Moreover, constitutive activation of this response through deletion of the anti-sigma factor gene rseA or exposure of bacilli to drugs that target the cell wall was found to potently drive pyrazinamide susceptibility independent of environmental pH. These findings force a paradigm shift in our understanding of pyrazinamide action and open new avenues for improving diagnostic and therapeutic tools for tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Pyrazinamide/therapeutic use , Mycobacterium tuberculosis/genetics , Amidohydrolases/metabolism , Antitubercular Agents/pharmacology , Tuberculosis/microbiology , Mutation , Microbial Sensitivity Tests
9.
Transfusion ; 61(1): 17-23, 2021 01.
Article in English | MEDLINE | ID: mdl-32935872

ABSTRACT

BACKGROUND: The transfer of passive immunity with convalescent plasma is a promising strategy for treatment and prevention of COVID-19, but donors with a history of nonsevere disease are serologically heterogenous. The relationship between SARS-Cov-2 antigen-binding activity and neutralization activity in this population of donors has not been defined. STUDY DESIGN AND METHODS: Convalescent plasma units from 47 individuals with a history of nonsevere COVID-19 were assessed for antigen-binding activity of using three clinical diagnostic serology assays (Beckman, DiaSorin, and Roche) with different SARS-CoV-2 targets. These results were compared with functional neutralization activity using a fluorescent reporter strain of SARS-CoV-2 in a microwell assay. RESULTS: Positive correlations of varying strength (Spearman r = 0.37-0.52) between antigen binding and viral neutralization were identified. Donors age 48 to 75 years had the highest neutralization activity. Units in the highest tertile of binding activity for each assay were enriched (75%-82%) for those with the highest levels of neutralization. CONCLUSION: The strength of the relationship between antigen-binding activity and neutralization varies depending on the clinical assay used. Units in the highest tertile of binding activity for each assay are predominantly comprised of those with the greatest neutralization activity.


Subject(s)
SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Serological Testing , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , Immunoglobulin G/immunology , SARS-CoV-2/pathogenicity , Serologic Tests , COVID-19 Serotherapy
10.
bioRxiv ; 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33106802

ABSTRACT

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.

11.
bioRxiv ; 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32817936

ABSTRACT

We determined the antigen binding activity of convalescent plasma units from 47 individuals with a history of non-severe COVID-19 using three clinical diagnostic serology assays (Beckman, DiaSorin, and Roche) with different SARS-CoV-2 targets. We compared these results with functional neutralization activity using a fluorescent reporter strain of SARS-CoV-2 in a microwell assay. This revealed positive correlations of varying strength (Spearman r = 0.37-0.52) between binding and neutralization. Donors age 48-75 had the highest neutralization activity. Units in the highest tertile of binding activity for each assay were enriched (75-82%) for those with the highest levels of neutralization.

12.
mSystems ; 4(4)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31239393

ABSTRACT

A better understanding of essential cellular functions in pathogenic bacteria is important for the development of more effective antimicrobial agents. We performed a comprehensive identification of essential genes in Mycobacterium tuberculosis, the major causative agent of tuberculosis, using a combination of transposon insertion sequencing (Tn-seq) and comparative genomic analysis. To identify conditionally essential genes by Tn-seq, we used media with different nutrient compositions. Although many conditional gene essentialities were affected by the presence of relevant nutrient sources, we also found that the essentiality of genes in a subset of metabolic pathways was unaffected by metabolite availability. Comparative genomic analysis revealed that not all essential genes identified by Tn-seq were fully conserved within the M. tuberculosis complex, including some existing antitubercular drug target genes. In addition, we utilized an available M. tuberculosis genome-scale metabolic model, iSM810, to predict M. tuberculosis gene essentiality in silico Comparing the sets of essential genes experimentally identified by Tn-seq to those predicted in silico reveals the capabilities and limitations of gene essentiality predictions, highlighting the complexity of M. tuberculosis essential metabolic functions. This study provides a promising platform to study essential cellular functions in M. tuberculosis IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of tuberculosis (TB), resulting in over 1 million deaths each year. TB therapy is challenging because it requires a minimum of 6 months of treatment with multiple drugs. Protracted treatment times and the emergent spread of drug-resistant M. tuberculosis necessitate the identification of novel targets for drug discovery to curb this global health threat. Essential functions, defined as those indispensable for growth and/or survival, are potential targets for new antimicrobial drugs. In this study, we aimed to define gene essentialities of M. tuberculosis on a genomewide scale to comprehensively identify potential targets for drug discovery. We utilized a combination of experimental (functional genomics) and in silico approaches (comparative genomics and flux balance analysis). Our functional genomics approach identified sets of genes whose essentiality was affected by nutrient availability. Comparative genomics revealed that not all essential genes were fully conserved within the M. tuberculosis complex. Comparing sets of essential genes identified by functional genomics to those predicted by flux balance analysis highlighted gaps in current knowledge regarding M. tuberculosis metabolic capabilities. Thus, our study identifies numerous potential antitubercular drug targets and provides a comprehensive picture of the complexity of M. tuberculosis essential cellular functions.

13.
Nat Microbiol ; 2(12): 1624-1634, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28947739

ABSTRACT

Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. This discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.


Subject(s)
Bacteria/enzymology , Bacteria/genetics , Genes, Bacterial/genetics , Levulinic Acids/metabolism , Metabolic Networks and Pathways/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Base Sequence , Biomass , CRISPR-Cas Systems/genetics , Carbon/metabolism , DNA Transposable Elements , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Gene Knockdown Techniques , Levulinic Acids/chemistry , Metabolic Engineering , Operon/genetics , Propionates/metabolism , Pseudomonas putida/enzymology , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
14.
Sci Rep ; 6: 38083, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905500

ABSTRACT

The ability to revitalize and re-purpose existing drugs offers a powerful approach for novel treatment options against Mycobacterium tuberculosis and other infectious agents. Antifolates are an underutilized drug class in tuberculosis (TB) therapy, capable of disrupting the biosynthesis of tetrahydrofolate, an essential cellular cofactor. Based on the observation that exogenously supplied p-aminobenzoic acid (PABA) can antagonize the action of antifolates that interact with dihydropteroate synthase (DHPS), such as sulfonamides and p-aminosalicylic acid (PAS), we hypothesized that bacterial PABA biosynthesis contributes to intrinsic antifolate resistance. Herein, we demonstrate that disruption of PABA biosynthesis potentiates the anti-tubercular action of DHPS inhibitors and PAS by up to 1000 fold. Disruption of PABA biosynthesis is also demonstrated to lead to loss of viability over time. Further, we demonstrate that this strategy restores the wild type level of PAS susceptibility in a previously characterized PAS resistant strain of M. tuberculosis. Finally, we demonstrate selective inhibition of PABA biosynthesis in M. tuberculosis using the small molecule MAC173979. This study reveals that the M. tuberculosis PABA biosynthetic pathway is responsible for intrinsic resistance to various antifolates and this pathway is a chemically vulnerable target whose disruption could potentiate the tuberculocidal activity of an underutilized class of antimicrobial agents.


Subject(s)
Biosynthetic Pathways/drug effects , Drug Resistance, Bacterial/drug effects , Folic Acid Antagonists/pharmacology , Mycobacterium tuberculosis/genetics , Small Molecule Libraries/pharmacology , 4-Aminobenzoic Acid/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways/genetics , Cloning, Molecular , Drug Repositioning , Drug Synergism , Gene Expression Regulation, Bacterial/drug effects , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries/chemical synthesis
15.
Antimicrob Agents Chemother ; 59(9): 5097-106, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26033719

ABSTRACT

para-Aminosalicylic acid (PAS) entered clinical use in 1946 as the second exclusive drug for the treatment of tuberculosis (TB). While PAS was initially a first-line TB drug, the introduction of more potent antitubercular agents relegated PAS to the second-line tier of agents used for the treatment of drug-resistant Mycobacterium tuberculosis infections. Despite the long history of PAS usage, an understanding of the molecular and biochemical mechanisms governing the susceptibility and resistance of M. tuberculosis to this drug has lagged behind that of most other TB drugs. Herein, we discuss previous studies that demonstrate PAS-mediated disruption of iron acquisition, as well as recent genetic, biochemical, and metabolomic studies that have revealed that PAS is a prodrug that ultimately corrupts one-carbon metabolism through inhibition of the formation of reduced folate species. We also discuss findings from laboratory and clinical isolates that link alterations in folate metabolism to PAS resistance. These advancements in our understanding of the basis of the susceptibility and resistance of M. tuberculosis to PAS will enable the development of novel strategies to revitalize this and other antimicrobial agents for use in the global effort to eradicate TB.


Subject(s)
Aminosalicylic Acid/pharmacology , Antitubercular Agents/pharmacology , Folic Acid/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant
SELECTION OF CITATIONS
SEARCH DETAIL
...