Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 121(3): 565-577, 2024 03.
Article in English | MEDLINE | ID: mdl-38396332

ABSTRACT

Plasmodium sporozoites are the highly motile and invasive forms of the malaria parasite transmitted by mosquitoes. Sporozoites form within oocysts at the midgut wall of the mosquito, egress from oocysts and enter salivary glands prior to transmission. The GPI-anchored major surface protein, the circumsporozoite protein (CSP) is important for Plasmodium sporozoite formation, egress, migration and invasion. To visualize CSP, we previously generated full-length versions of CSP internally tagged with the green fluorescent protein, GFP. However, while these allowed for imaging of sporogony in oocysts, sporozoites failed to egress. Here, we explore different strategies to overcome this block in egress and obtain salivary gland resident sporozoites that express CSP-GFP. Replacing the N-terminal and repeat region with GFP did not allow sporozoite formation. Lowering expression of CSP-GFP at the endogenous locus allowed sporozoite formation but did not overcome egress block. Crossing of CSP-GFP expressing parasites that are blocked in egress with wild-type parasites yielded a small fraction of parasites that entered salivary glands and expressed various levels of CSP-GFP. Expressing CSP-GFP constructs from a silent chromosome region from promoters that are active only post salivary gland invasion yielded normal numbers of fluorescent salivary gland sporozoites, albeit with low levels of fluorescence. We also show that lowering CSP expression by 50% allowed egress from oocysts but not salivary gland entry. In conclusion, Plasmodium berghei parasites with normal CSP expression tolerate a certain level of CSP-GFP without disruption of oocyst egress and salivary gland invasion.


Subject(s)
Anopheles , Sporozoites , Animals , Sporozoites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Anopheles/parasitology , Oocysts , Plasmodium berghei/genetics , Plasmodium berghei/metabolism
2.
Cell Microbiol ; 18(3): 437-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26399761

ABSTRACT

Autophagy plays an important role in the defence against intracellular pathogens. However, some microorganisms can manipulate this host cell pathway to their advantage. In this study, we addressed the role of host cell autophagy during Plasmodium berghei liver infection. We show that vesicles containing the autophagic marker LC3 surround parasites from early time-points after invasion and throughout infection and colocalize with the parasitophorous vacuole membrane. Moreover, we show that the LC3-positive vesicles that surround Plasmodium parasites are amphisomes that converge from the endocytic and autophagic pathways, because they contain markers of both pathways. When the host autophagic pathway was inhibited by silencing several of its key regulators such as LC3, Beclin1, Vps34 or Atg5, we observed a reduction in parasite size. We also found that LC3 surrounds parasites in vivo and that parasite load is diminished in a mouse model deficient for autophagy. Together, these results show the importance of the host autophagic pathway for parasite development during the liver stage of Plasmodium infection.


Subject(s)
Autophagy/physiology , Host-Parasite Interactions/physiology , Liver/parasitology , Malaria/pathology , Plasmodium berghei/pathogenicity , Animals , Apoptosis Regulatory Proteins/metabolism , Beclin-1 , Liver/pathology , Malaria/parasitology , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins/metabolism
3.
Traffic ; 15(10): 1066-82, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24992508

ABSTRACT

Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5-kinase (PIKfyve) that converts phosphatidylinositol 3-phosphate [PI(3)P] into phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2 ] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non-pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2 -dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.


Subject(s)
Liver/metabolism , Phosphatidylinositol Phosphates/metabolism , Plasmodium berghei/pathogenicity , Animals , Cell Line, Tumor , Endocytosis , Liver/parasitology , Mice , Parasite Load , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Plasmodium berghei/physiology , Protein Transport , Transient Receptor Potential Channels/metabolism
4.
JAMA Neurol ; 70(4): 481-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23400676

ABSTRACT

IMPORTANCE: Hereditary spastic paraplegias (HSPs) are a group of diseases caused by corticospinal tract degeneration. Mutations in 3 genes (SPG4, SPG3, and SPG31) are said to be the cause in half of the autosomal dominant HSPs (AD-HSPs). This study is a systematic review of families with HSP resulting from a population-based survey. Novel genotype-phenotype correlations were established. OBJECTIVE: To describe the clinical, genetic, and epidemiological features of Portuguese AD-HSP families. DESIGN: Retrospective medical record review. SETTING: A population-based systematic survey of hereditary ataxias and spastic paraplegias conducted in Portugal from 1993 to 2004. PARTICIPANTS: Families with AD-HSP. MAIN OUTCOME MEASURE: Mutation detection in the most prevalent genes. RESULTS: We identified 239 patients belonging to 89 AD-HSP families. The prevalence was 2.4 in 100 000. Thirty-one distinct mutations (26 in SPG4, 4 in SPG3, and 1 in SPG31) segregated in 41% of the families (33.7%, 6.2%, and 1.2% had SPG4, SPG3 and SPG31 mutations, respectively). Seven of the SPG4 mutations were novel, and 7% of all SPG4 mutations were deletions. When disease onset was before the first decade, 31% had SPG4 mutations and 27% had SPG3 mutations. In patients with SPG4 mutations, those with large deletions had the earliest disease onset, followed by those with missense, frameshift, nonsense, and alternative-splicing mutations. Rate of disease progression was not significantly different among patients with SPG3 and SPG4 mutations in a multivariate analysis. For patients with SPG4 mutations, disease progression was worst in patients with later-onset disease. CONCLUSIONS AND RELEVANCE: The prevalence of AD-HSP and frequency of SPG3 and SPG4 mutations in the current study were similar to what has been described in other studies except that the frequency of SPG4 deletions was lower. In contrast, the frequency of SPG31 mutations in the current study was rare compared with other studies. The most interesting aspects of this study are that even in patients with early-onset disease the probability of finding a SPG4 mutation was higher than for patients with SPG3 mutations; there was no difference in disease progression with genotype but an association with the age at onset; 7 new SPG4 mutations were identified; and for the first time, to our knowledge, the nature of the SPG4 mutations was found to predict the age at onset.


Subject(s)
Adenosine Triphosphatases/genetics , Cataract/epidemiology , Cataract/genetics , Family Health , Growth Disorders/epidemiology , Growth Disorders/genetics , Mutation/genetics , Spastic Paraplegia, Hereditary/epidemiology , Spastic Paraplegia, Hereditary/genetics , Adult , Age of Onset , Bone and Bones/abnormalities , DNA Mutational Analysis , Disability Evaluation , Disease Progression , Female , GTP-Binding Proteins/genetics , Genes, Dominant/genetics , Genotype , Health Surveys , Humans , Male , Membrane Proteins/genetics , Middle Aged , Neurologic Examination , Phenotype , Portugal/epidemiology , Retrospective Studies , Severity of Illness Index , Spastin , Statistics as Topic
5.
Traffic ; 13(10): 1351-63, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22780869

ABSTRACT

The obligate intracellular liver stage of the Plasmodium parasite represents a bottleneck in the parasite life cycle and remains a promising target for therapeutic intervention. During this stage, parasites undergo dramatic morphological changes and achieve one of the fastest replication rates among eukaryotic species. Nevertheless, relatively little is known about the parasite interactions with the host hepatocyte. Using immunofluorescence, live cell imaging and electron microscopy, we show that Plasmodium berghei parasites are surrounded by vesicles from the host late endocytic pathway. We found that these vesicles are acidic and contain the membrane markers Rab7a, CD63 and LAMP1. When host cell vesicle acidification was disrupted using ammonium chloride or Concanamycin A during the late liver stage of infection, parasite survival was not affected, but schizont size was significantly decreased. Furthermore, when the host cell endocytic pathway was loaded with BSA-gold, gold particles were found within the parasite cytoplasm, showing the transport of material from the host endocytic pathway toward the parasite interior. These observations reveal a novel Plasmodium-host interaction and suggest that vesicles from the host endolysosomal pathway could represent an important source of nutrients exploited by the fast-growing late liver stage parasites.


Subject(s)
Endocytosis , Hepatocytes/metabolism , Hepatocytes/parasitology , Host-Parasite Interactions , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Animals , Cytoplasmic Vesicles/chemistry , Female , Lysosomal Membrane Proteins/analysis , Mice , Mice, Inbred C57BL , Schizonts/growth & development , Tetraspanin 30/analysis , Tumor Cells, Cultured , rab GTP-Binding Proteins/analysis , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...