Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38745347

ABSTRACT

BACKGROUND: Patients with type O blood may have an increased risk of hemorrhagic complications due to lower baseline levels of von Willebrand Factor (vWF) and factor VIII, but the transition to a mortality difference in trauma is less clear. We hypothesized that type O trauma patients will have differential proteomic and metabolomic signatures in response to trauma beyond vWF and FVIII alone. METHODS: Patients meeting the highest level of trauma activation criteria were prospectively enrolled. Blood samples were collected upon arrival to the emergency department. Proteomic and metabolomic (multi-omics) analyses of these samples were performed using liquid chromatography-mass spectrometry. Demographic, clinical, and multi-omics data were compared between patients with type O blood versus all other patients. RESULTS: There were 288 patients with multi-omics data; 146 (51%) had type O blood. Demographics, injury patterns, and initial vital signs and laboratory measurements were not different between groups. Type O patients had increased lengths of stay (7 vs. 6 days, p = 0.041) and a trend towards decreased mortality secondary to traumatic brain injury compared to other causes (TBI, 44.4 % vs. 87.5%, p = 0.055). Type O patients had decreased levels of mannose-binding lectin (MBL) and MBL associated serine proteases 1 and 2 which are required for the initiation of the lectin pathway of complement activation. Type O patients also had metabolite differences signifying energy metabolism and mitochondrial dysfunction. CONCLUSION: Blood type O patients have a unique multi-omics signature, including decreased levels of proteins required to activate the lectin complement pathway. This may lead to overall decreased levels of complement activation and decreased systemic inflammation in the acute phase possibly leading to a survival advantage, especially in TBI. However, this may later impair healing. Future work will need to confirm these associations, and animal studies are needed to test therapeutic targets. LEVEL OF EVIDENCE: Retrospective Comparative Study, Level IV.

2.
Article in English | MEDLINE | ID: mdl-38797883

ABSTRACT

BACKGROUND: Both healthy plasma and cytoprotective aPC (3K3A-aPC) have been shown to mitigate the endotheliopathy of trauma (EoT), but optimal therapeutics remain unknown. Our aim was therefore to determine optimal therapies to mitigate EoT by investigating the effectiveness of 3K3A-aPC with and without plasma-based resuscitation strategies. METHODS: Electric cell-substrate impedance sensing (ECIS) was used to measure real-time permeability changes in endothelial cells. Cells were treated with a 2 µg/mL solution of aPC 30 minutes prior to stimulation with plasma taken from severely injured trauma patients (ISS > 15 and BD < -6) (TP). Healthy plasma, or plasma frozen within 24 hours (FP24), was added concomitantly with TP. Cells treated with thrombin and untreated cells were included in this study as control groups. RESULTS: A dose-dependent difference was found between the 5% and 10% plasma-treated groups when HUVECs were simultaneously stimulated with TP (µd 7.346 95%CI 4.574 to 10.12). There was no difference when compared to TP alone in the 5% (µd 5.713 95%CI -1.751 to 13.18) or 10% group (µd -1.633 95%CI -9.097 to 5.832). When 3K3A-aPC was added to plasma and TP, the 5% group showed improvement in permeability compared to TP alone (µd 10.11 95%CI 2.642 to 17.57), but there was no difference in the 10% group (µd -1.394 95%CI -8.859 to 6.070). The combination of 3K3A-aPC, plasma, and TP at both the 5% plasma (µd -28.52 95%CI-34.72 to -22.32) and 10% plasma concentrations (µd -40.02 95%CI -46.22 to -33.82) had higher inter-cellular permeability than the 3K3A-aPC pre-incubation group. CONCLUSION: Our data shows that FP24, in a post-trauma environment, pre-treatment with 3K3A-aPC can potentially mitigate the EoT to a greater degree than FP24 with or without 3K3A-aPC. Although further exploration is needed, this represents a potentially ideal and perhaps superior therapeutic treatment for the dysregulated thromboinflammation of injured patients. LEVEL OF EVIDENCE: Prognostic/Epidemiological, Therapeutic/Care Management, Level III.

3.
Article in English | MEDLINE | ID: mdl-38764145

ABSTRACT

BACKGROUND: Platelets are well known for their roles in hemostasis, but they also play a key role in thromboinflammatory pathways by regulating endothelial health, stimulating angiogenesis, and mediating host defense through both contact dependent and independent signaling. When activated, platelets degranulate releasing multiple active substances. We hypothesized that the soluble environment formed by trauma platelet releasates attenuates thromboinflammation via mitigation of trauma induced endothelial permeability and metabolomic reprogramming. METHODS: Blood was collected from injured and healthy patients to generate platelet releasates and plasma in parallel. Permeability of endothelial cells when exposed to trauma platelet releasates (TPR) and plasma (TP) was assessed via resistance measurement by Electric Cell-substrate Impedance Sensing (ECIS). Endothelial cells treated with TPR and TP were subjected to mass spectrometry-based metabolomics. RESULTS: TP increased endothelial permeability, whereas TPR decreased endothelial permeability when compared to untreated cells. When TP and TPR were mixed ex vivo, TPR mitigated TP-induced permeability, with significant increase in AUC compared to TP alone. Metabolomics of TPR and TP demonstrated disrupted redox reactions and anti-inflammatory mechanisms. CONCLUSION: TPRs provide endothelial barrier protection against TP-induced endothelial permeability. Our findings highlight a potential beneficial action of activated platelets on the endothelium in injured patients through disrupted redox reactions and increased antioxidants. Our findings support that soluble signaling from platelet degranulation may mitigate the endotheliopathy of trauma. The clinical implications of this are that activated platelets may prove a promising therapeutic target in the complex integration of thrombosis, endotheliopathy, and inflammation in trauma. LEVEL OF EVIDENCE: Prognostic/Epidemiological, Level III.

4.
Ann Surg Oncol ; 31(9): 6127-6137, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38780693

ABSTRACT

BACKGROUND: Radiologic occult metastatic disease (ROMD) in patients with pancreatic ductal adenocarcinoma (PDAC) who undergo contemporary neoadjuvant chemotherapy (NAC) has not been well studied. This study sought to analyze the incidence, risk factors, and oncologic outcomes for patients who underwent the NAC approach for PDAC. METHODS: A retrospective review analyzed a prospectively maintained database of patients who had potentially resectable PDAC treated with NAC and were offered pancreatectomy at our institution from 2011 to 2022. Multivariable regression analysis was performed to assess risk factors associated with ROMD. Kaplan-Meier curves with log-rank analyses were generated to estimate time-to-event end points. RESULTS: The study enrolled 366 patients. Upfront and borderline resectable anatomic staging comprised 80% of the cohort, whereas 20% had locally advanced disease. The most common NAC regimen was FOLFIRINOX (n = 274, 75%). For 55 patients (15%) who harbored ROMD, the most common site was liver-only metastases (n = 33, 60%). The independent risk factors for ROMD were increasing CA19-9 levels during NAC (odds ratio [OR], 7.01; confidence interval [CI], 1.97-24.96; p = 0.008), indeterminate liver lesions (OR, 2.19; CI, 1.09-4.39; p = 0.028), and enlarged para-aortic lymph nodes (OR, 6.87; CI, 2.07-22.74; p = 0.002) on preoperative cross-sectional imaging. Receipt of palliative chemotherapy (p < 0.001) and eventual formal pancreatectomy (p = 0.04) were associated with survival benefit in the log-rank analysis. The median overall survival (OS) of the patients with ROMD was nearly 15 months from the initial diagnosis, with radiologic evidence of metastases occurring after a median of 2 months. CONCLUSIONS: Radiologic occult metastatic disease remains a clinical challenge associated with poor outcomes for patients who have PDAC treated with multi-agent NAC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Pancreatic Ductal , Neoadjuvant Therapy , Pancreatectomy , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/mortality , Male , Female , Neoadjuvant Therapy/mortality , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Risk Factors , Aged , Survival Rate , Carcinoma, Pancreatic Ductal/secondary , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/mortality , Follow-Up Studies , Prognosis , Fluorouracil/administration & dosage , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Oxaliplatin/administration & dosage , Leucovorin/administration & dosage , Adult , Prospective Studies , Irinotecan/administration & dosage , Lymphatic Metastasis
5.
J Trauma Acute Care Surg ; 97(1): 48-56, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38548690

ABSTRACT

INTRODUCTION: Smoking is a public health threat because of its well-described link to increased oxidative stress-related diseases including peripheral vascular disease and coronary artery disease. Tobacco use has been linked to risk of inpatient trauma morbidity including acute respiratory distress syndrome; however, its mechanistic effect on comprehensive metabolic heterogeneity has yet to be examined. METHODS: Plasma was obtained on arrival from injured patients at a Level 1 trauma center and analyzed with modern mass spectrometry-based metabolomics. Patients were stratified by nonsmoker, passive smoker, and active smoker by lower, interquartile, and upper quartile ranges of cotinine intensity peaks. Patients were substratified by high injury/high shock (Injury Severity Score, ≥15; base excess, <-6) and compared with healthy controls. p Value of <0.05 following false discovery rate correction of t test was considered significant. RESULTS: Forty-eight patients with high injury/high shock (7 nonsmokers [15%], 25 passive smokers [52%], and 16 active smokers [33%]) and 95 healthy patients who served as controls (30 nonsmokers [32%], 43 passive smokers [45%], and 22 active smokers [23%]) were included. Elevated metabolites in our controls who were active smokers include enrichment in chronic inflammatory and oxidative processes. Elevated metabolites in active smokers in high injury/high shock include enrichment in the malate-aspartate shuttle, tyrosine metabolism, carnitine synthesis, and oxidation of very long-chain fatty acids. CONCLUSION: Smoking promotes a state of oxidative stress leading to mitochondrial dysfunction, which is additive to the inflammatory milieu of trauma. Smoking is associated with impaired mitochondrial substrate utilization of long-chain fatty acids, aspartate, and tyrosine, all of which accentuate oxidative stress following injury. This altered expression represents an ideal target for therapies to reduce oxidative damage toward the goal of personalized treatment of trauma patients. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level IV.


Subject(s)
Metabolomics , Wounds and Injuries , Humans , Male , Female , Adult , Wounds and Injuries/metabolism , Wounds and Injuries/blood , Wounds and Injuries/complications , Middle Aged , Metabolomics/methods , Smoking/adverse effects , Smoking/metabolism , Smoking/blood , Oxidative Stress/physiology , Case-Control Studies , Injury Severity Score , Trauma Centers , Cotinine/blood , Cotinine/metabolism , Biomarkers/blood , Biomarkers/metabolism
6.
Shock ; 61(2): 322-329, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38407818

ABSTRACT

ABSTRACT: Objective: We sought to identify potential drivers behind resuscitative endovascular balloon occlusion of the aorta (REBOA) induced reperfusion coagulopathy using novel proteomic methods. Background: Coagulopathy associated with REBOA is poorly defined. The REBOA Zone 1 provokes hepatic and intestinal ischemia that may alter coagulation factor production and lead to molecular pathway alterations that compromises hemostasis. We hypothesized that REBOA Zone 1 would lead to reperfusion coagulopathy driven by mediators of fibrinolysis, loss of coagulation factors, and potential endothelial dysfunction. Methods: Yorkshire swine were subjected to a polytrauma injury (blast traumatic brain injury, tissue injury, and hemorrhagic shock). Pigs were randomized to observation only (controls, n = 6) or to 30 min of REBOA Zone 1 (n = 6) or REBOA Zone 3 (n = 4) as part of their resuscitation. Thromboelastography was used to detect coagulopathy. ELISA assays and mass spectrometry proteomics were used to measure plasma protein levels related to coagulation and systemic inflammation. Results: After the polytrauma phase, balloon deflation of REBOA Zone 1 was associated with significant hyperfibrinolysis (TEG results: REBOA Zone 1 35.50% versus control 9.5% vs. Zone 3 2.4%, P < 0.05). In the proteomics and ELISA results, REBOA Zone 1 was associated with significant decreases in coagulation factor XI and coagulation factor II, and significant elevations of active tissue plasminogen activator, plasmin-antiplasmin complex complexes, and syndecan-1 (P < 0.05). Conclusion: REBOA Zone 1 alters circulating mediators of clot formation, clot lysis, and increases plasma levels of known markers of endotheliopathy, leading to a reperfusion-induced coagulopathy compared with REBOA Zone 3 and no REBOA.


Subject(s)
Balloon Occlusion , Blood Coagulation Disorders , Multiple Trauma , Animals , Swine , Tissue Plasminogen Activator , Proteomics , Aorta
7.
J Trauma Acute Care Surg ; 96(1): 116-122, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37733304

ABSTRACT

BACKGROUND: Activated Protein C (aPC) plays dual roles after injury, driving both trauma-induced coagulopathy (TIC) by cleaving, and thus inactivating, factors Va and VIIIa and depressing fibrinolysis while also mediating an inflammomodulatory milieu via protease activated receptor-1 (PAR-1) cytoprotective signaling. Because of this dual role, it represents and ideal target for study and therapeutics after trauma. A known aPC variant, 3K3A-aPC, has been engineered to preserve cytoprotective activity while retaining minimal anticoagulant activity rendering it potentially ideal as a cytoprotective therapeutic after trauma. We hypothesized that 3K3A-aPC would mitigate the endotheliopathy of trauma by protecting against endothelial permeability. METHODS: We used electric cell-substrate impedance sensing to measure permeability changes in real time in primary endothelial cells. These were cultured, grown to confluence, and treated with a 2 µg/mL solution of 3K3A-aPC at 180 minutes, 120 minutes, 60 minutes, 30 minutes prior to stimulation with ex vivo plasma taken from severely injured trauma patients (Injury Severity Score > 15 and BD < -6) (trauma plasma [TP]). Cells treated with thrombin and untreated cells were included in this study as control groups. Permeability changes were recorded in real time via electric cell-substrate impedance sensing for 30 minutes after treatment with TP. We quantified permeability changes in the control and treatment groups as area under the curve (AUC). Rac1/RhoA activity was also compared between these groups. Statistical significance was determined by one-way ANOVA followed by a post hoc analysis using Tukey's multiple comparison's test. RESULTS: Treatment with aPC mitigated endothelial permeability induced by ex vivo trauma plasma at all pre-treatment time points. The AUC of the 30-minute 3K3A-aPC pretreatment group was higher than TP alone (mean diff. 22.12 95% CI [13.75, 30.49], p < 0.0001) (Figure). Moreover, the AUC of the 60-minute, 120-minute, and 180-minute pretreatment groups was also higher than TP alone (mean diff., 16.30; 95% confidence interval [CI], 7.93-24.67; 19.43; 95% CI, 11.06-27.80, and 18.65; 95% CI, 10.28-27.02;, all p < 0.0001, respectively). Rac1/RhoA activity was higher in the aPC pretreatment group when compared with all other groups ( p < 0.01). CONCLUSION: Pretreatment with 3K3A-aPC, which retains its cytoprotective function but has only ~5% of its anticoagulant function, abrogates the effects of trauma-induced endotheliopathy. This represents a potential therapeutic treatment for dysregulated thromboinflammation for injured patients by minimizing aPC's role in trauma-induced coagulopathy while concurrently amplifying its essential cytoprotective function. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level III.


Subject(s)
Protein C , Thrombosis , Humans , Protein C/pharmacology , Protein C/therapeutic use , Protein C/metabolism , Endothelial Cells/metabolism , Thromboinflammation , Inflammation/metabolism , Anticoagulants/therapeutic use
8.
Ann Surg ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38073572

ABSTRACT

OBJECTIVE: We aimed to investigate if ex vivo plasma from injured patients causes endothelial calcium (Ca2+) influx as a mechanism of trauma-induced endothelial permeability. SUMMARY BACKGROUND DATA: Endothelial permeability after trauma contributes to post-injury organ dysfunction. While the mechanisms remain unclear, emerging evidence suggests intracellular Ca2+ signaling may play a role. METHODS: Ex vivo plasma from injured patients with "Low Injury/Low Shock" (injury severity score [ISS]<15, base excess [BE])≥-6mEq/L) and "High Injury/High Shock" (ISS≥15, BE<-6mEq/L) were used to treat endothelial cells. Experimental conditions included Ca2+ removal from the extracellular buffer, cyclopiazonic acid pre-treatment to deplete intracellular Ca2+ stores, and GSK2193874 pre-treatment to block the TRPV4 Ca2+ channel. Live cell fluorescence microscopy and ECIS were used to assess cytosolic Ca2+ increases and permeability, respectively. Western blot and live cell actin staining were used to assess myosin light chain (MLC) phosphorylation and actomyosin contraction. RESULTS: Compared to Low Injury/Low Shock plasma, High Injury/High Shock induced greater cytosolic Ca2+ increase. Cytosolic Ca2+ increase, MLC phosphorylation, and actin cytoskeletal contraction were lower without extracellular Ca2+ present. High Injury/High Shock plasma did not induce endothelial permeability without extracellular Ca2+ present. TRPV4 inhibition lowered trauma plasma-induced endothelial Ca2+ influx and permeability. CONCLUSIONS: This study illuminates a novel mechanism of post-injury endotheliopathy involving Ca2+ influx via the TRPV4 channel. TRPV4 inhibition mitigates trauma-induced endothelial permeability. Moreover, widespread endothelial Ca2+ influx may contribute to trauma-induced hypocalcemia. This study provides the mechanistic basis for the development of Ca2+-targeted therapies and interventions in the care of severely injured patients.

9.
Shock ; 60(5): 652-663, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37695733

ABSTRACT

ABSTRACT: Background: Trauma-induced hypocalcemia is common and associated with adverse outcomes, but the mechanisms remain unclear. Thus, we aimed to characterize the metabolomic and proteomic differences between normocalcemic and hypocalcemic trauma patients to illuminate biochemical pathways that may underlie a distinct pathology linked with this clinical phenomenon. Methods: Plasma was obtained on arrival from injured patients at a Level 1 Trauma Center. Samples obtained after transfusion were excluded. Multiple regression was used to adjust the omics data for injury severity and arrival base excess before metabolome- and proteome-wide comparisons between normocalcemic (ionized Ca 2+ > 1.0 mmol/L) and hypocalcemic (ionized Ca 2+ ≤ 1.0 mmol/L) patients using partial least squares-discriminant analysis. OmicsNet and Gene Ontology were used for network and pathway analyses, respectively. Results: Excluding isolated traumatic brain injury and penetrating injury, the main analysis included 36 patients (n = 14 hypocalcemic, n = 22 normocalcemic). Adjusted analyses demonstrated distinct metabolomic and proteomic signatures for normocalcemic and hypocalcemic patients. Hypocalcemic patients had evidence of mitochondrial dysfunction (tricarboxylic acid cycle disruption, dysfunctional fatty acid oxidation), inflammatory dysregulation (elevated damage-associated molecular patterns, activated endothelial cells), aberrant coagulation pathways, and proteolytic imbalance with increased tissue destruction. Conclusions: Independent of injury severity, hemorrhagic shock, and transfusion, trauma-induced hypocalcemia is associated with early metabolomic and proteomic changes that may reflect unique pathology in hypocalcemic trauma patients. This study paves the way for future experiments to investigate mechanisms, identify intervenable pathways, and refine our management of hypocalcemia in severely injured patients.


Subject(s)
Hypocalcemia , Shock, Hemorrhagic , Humans , Hypocalcemia/metabolism , Calcium/metabolism , Endothelial Cells/metabolism , Proteomics
10.
Am J Surg ; 226(6): 790-797, 2023 12.
Article in English | MEDLINE | ID: mdl-37541795

ABSTRACT

BACKGROUND: The interactions of polytrauma, shock, and traumatic brain injury (TBI) on thromboinflammatory responses remain unclear and warrant investigation as we strive towards personalized medicine in trauma. We hypothesized that comprehensive omics characterization of plasma would identify unique metabolic and thromboinflammatory pathways following TBI. METHODS: Patients were categorized as TBI vs Non-TBI, and stratified into Polytrauma or minimally injured. Discovery 'omics was employed to quantify the top differently expressed proteins and metabolites of TBI and Non-TBI patient groups. RESULTS: TBI compared to Non-TBI showed gene enrichment in coagulation/complement cascades and neuronal markers. TBI was associated with elevation in glycolytic metabolites and conjugated bile acids. Division into isolated TBI vs polytrauma showed further distinction of proteomic and metabolomic signatures. CONCLUSION: Identified mediators involving in neural inflammation, blood brain barrier disruption, and bile acid building leading to TBI associated coagulopathy offer suggestions for follow up mechanistic studies to target personalized interventions.


Subject(s)
Blood Coagulation Disorders , Brain Injuries, Traumatic , Multiple Trauma , Humans , Proteomics , Blood Coagulation Disorders/etiology , Metabolomics
11.
bioRxiv ; 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37645811

ABSTRACT

Understanding and managing the complexity of trauma-induced thrombo-inflammation necessitates an innovative, data-driven approach. This study leveraged a trans-omics analysis of longitudinal samples from trauma patients to illuminate molecular endotypes and trajectories that underpin patient outcomes, transcending traditional demographic and physiological characterizations. We hypothesize that trans-omics profiling reveals underlying clinical differences in severely injured patients that may present with similar clinical characteristics but ultimately have very different responses to treatment and clinical outcomes. Here we used proteomics and metabolomics to profile 759 of longitudinal plasma samples from 118 patients at 11 time points and 97 control subjects. Results were used to define distinct patient states through data reduction techniques. The patient groups were stratified based on their shock severity and injury severity score, revealing a spectrum of responses to trauma and treatment that are fundamentally tied to their unique underlying biology. Ensemble models were then employed, demonstrating the predictive power of these molecular signatures with area under the receiver operating curves of 80 to 94% for key outcomes such as INR, ICU-free days, ventilator-free days, acute lung injury, massive transfusion, and death. The molecularly defined endotypes and trajectories provide an unprecedented lens to understand and potentially guide trauma patient management, opening a path towards precision medicine. This strategy presents a transformative framework that aligns with our understanding that trauma patients, despite similar clinical presentations, might harbor vastly different biological responses and outcomes.

12.
J Trauma Acute Care Surg ; 94(3): 361-370, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36730076

ABSTRACT

BACKGROUND: Release of neutrophil extracellular traps (NETosis) may mediate postinjury organ dysfunction, but mechanisms remain unclear. The intracellular serine protease inhibitor (serpin) B1 is vital to neutrophil function and has been shown to restrict NETosis in inflammatory settings. In this study, we used discovery proteomics to identify the proteomic signature of trauma-induced NETosis. We hypothesized that serpinB1 would be a major component of this NET protein profile and associated with adverse outcomes. METHODS: This was a post hoc analysis of data collected as part of the COMBAT randomized clinical trial. Blood was collected from injured patients at a single Level I Trauma Center. Proteomic analyses were performed through targeted liquid chromatography coupled with mass spectrometry. Abundances of serpinB1 and known NETosis markers were analyzed with patient and injury characteristics, clinical data, and outcomes. RESULTS: SerpinB1 levels on emergency department (ED) arrival were significantly correlated with proteomic markers of NETosis, including core histones, transketolase, and S100A8/A9 proteins. More severely injured patients had elevated serpinB1 and NETosis markers on ED arrival. Levels of serpinB1 and top NETosis markers were significantly elevated on ED arrival in nonsurvivors and patients with fewer ventilator- and ICU-free days. In proteome-wide receiver operating characteristic analysis, serpinB1 was consistently among the top proteins associated with adverse outcomes. Among NETosis markers, levels of serpinB1 early in the patient's course exhibited the greatest separation between patients with fewer and greater ventilator- and ICU-free days. Gene Ontology analysis of top predictors of adverse outcomes further supports NETosis as a potential mediator of postinjury organ dysfunction. CONCLUSION: We have identified a proteomic signature of trauma-induced NETosis, and NETosis is an early process following severe injury that may mediate organ dysfunction. In addition, serpinB1 is a major component of this NET protein profile that may serve as an early marker of excessive NETosis after injury.


Subject(s)
Proteomics , Serpins , Humans , Multiple Organ Failure , Neutrophils/metabolism , Histones , Serpins/metabolism
13.
Shock ; 59(1): 12-19, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36378232

ABSTRACT

ABSTRACT: Background: Severe injury can provoke systemic processes that lead to organ dysfunction, and hemolysis of both native and transfused red blood cells (RBCs) may contribute. Hemolysis can release erythrocyte proteins, such as hemoglobin and arginase-1, the latter with the potential to disrupt arginine metabolism and limit physiologic NO production. We aimed to quantify hemolysis and arginine metabolism in trauma patients and measure association with injury severity, transfusions, and outcomes. Methods: Blood was collected from injured patients at a level I trauma center enrolled in the COMBAT (Control of Major Bleeding After Trauma) trial. Proteomics and metabolomics were performed on plasma fractions through liquid chromatography coupled with mass spectrometry. Abundances of erythrocyte proteins comprising a hemolytic profile as well as haptoglobin, l -arginine, ornithine, and l -citrulline (NO surrogate marker) were analyzed at different timepoints and correlated with transfusions and adverse outcomes. Results: More critically injured patients, nonsurvivors, and those with longer ventilator requirement had higher levels of hemolysis markers with reduced l -arginine and l -citrulline. In logistic regression, elevated hemolysis markers, reduced l -arginine, and reduced l -citrulline were significantly associated with these adverse outcomes. An increased number of blood transfusions were significantly associated with elevated hemolysis markers and reduced l -arginine and l -citrulline independently of New Injury Severity Score and arterial base excess. Conclusions: Severe injury induces intravascular hemolysis, which may mediate postinjury organ dysfunction. In addition to native RBCs, transfused RBCs can lyse and may exacerbate trauma-induced hemolysis. Arginase-1 released from RBCs may contribute to the depletion of l -arginine and the subsequent reduction in the NO necessary to maintain organ perfusion.


Subject(s)
Arginine , Hemolysis , Humans , Arginase/metabolism , Nitric Oxide/metabolism , Citrulline , Erythrocyte Transfusion/adverse effects , Multiple Organ Failure
14.
Surgery ; 169(6): 1400-1406, 2021 06.
Article in English | MEDLINE | ID: mdl-33461777

ABSTRACT

BACKGROUND: Surgical mesh and hernia repair have come under increasing scrutiny with large amounts of press, Internet, and social media reportage regarding ongoing mesh litigation, recalls, and patient testimonials. The aim of this study was to evaluate patient perceptions of mesh in hernia surgery. METHODS: A 16-question survey was given to patients presenting for hernia surgery at a tertiary hernia center by trained data analysts before surgeon interaction. RESULTS: Two hundred and two patients were surveyed. Patients believed mesh caused complications (45.1%) and reported concerns about mesh (38.2%). Those who performed their own research, females, and patients with recurrent hernias were more likely to have concerns about mesh (P ≤ 0.03). Most patients (81.7%) thought they were at average risk or less for complications; patients with recurrent hernias (versus primary hernias) and incisional hernias (compared with inguinal or umbilical hernias) had more negative outlooks on complications (all P < .05). Recovery expectations varied, but the failed repair and incisional hernia groups were more likely to expect prolonged recovery (>3 months) (all P < .05). After surgeon-directed education and a mesh education handout, all but one patient agreed to and underwent a mesh repair as indicated. CONCLUSION: Patients had concerns about mesh and were aware of mesh related complications. Patients performing their own research, as well as females and recurrent hernia patients, had worse perceptions of mesh. Recurrent and incisional hernia patients had greater concerns about complications, recurrence, and recovery. Preoperative education concerning mesh and mesh choice for each operation eased patient anxiety.


Subject(s)
Health Knowledge, Attitudes, Practice , Herniorrhaphy/adverse effects , Surgical Mesh/adverse effects , Female , Hernia, Abdominal/surgery , Herniorrhaphy/instrumentation , Herniorrhaphy/methods , Humans , Male , Middle Aged , Recurrence , Surgical Mesh/statistics & numerical data , Surveys and Questionnaires , Treatment Outcome
15.
Surgery ; 169(3): 655-659, 2021 03.
Article in English | MEDLINE | ID: mdl-33127093

ABSTRACT

BACKGROUND: The opioid epidemic has reached a crisis level in America, and many institutions are implementing new guidelines to decrease opioid prescriptions. Although these may positively impact opioid addiction, its influence on patient satisfaction is inadequately described. The aim of the study was to evaluate the effect of standardized patient education and postoperative opioid regimens on patient satisfaction. METHODS: General surgery patients were counselled and given educational materials preoperatively regarding postoperative pain management. Inpatient discharge prescriptions were based on milligrams of oral narcotic required 24 hours before discharge. Outpatient procedure prescriptions were standardized. Postoperatively, patients received surveys regarding pain control and satisfaction. RESULTS: Of the 198 patients studied, 96% agreed or strongly agreed that they were satisfied with their pain control. 92% agreed or strongly agreed they received enough medication; 7% disagreed, and 1% strongly disagreed. Educational materials were evaluated with 97% agreeing or strongly agreeing they received appropriate information concerning when and what to take. Fifty-five patients (28%) refused opioids or did not take any. Only 10 (5%) requested a refill. CONCLUSION: Preoperative education and standardized postoperative narcotic prescribing can be highly effective while maintaining high patient satisfaction. Introduction across broad fields of surgery will allow uniformity for surgeons, trainees, nurses, pharmacists, and patients.


Subject(s)
Analgesics, Opioid , Drug Prescriptions/statistics & numerical data , Drug Prescriptions/standards , Patient Education as Topic , Patient Satisfaction , Preoperative Care , Adult , Aged , Analgesics, Opioid/administration & dosage , Female , Humans , Male , Middle Aged , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Preoperative Care/methods
SELECTION OF CITATIONS
SEARCH DETAIL