Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 13(12): 3145-3153, 2023 12.
Article in English | MEDLINE | ID: mdl-37335416

ABSTRACT

Sparse scan partial thermal ablation (TA) with focused ultrasound (FUS) may be deployed to treat solid tumors and increase delivery of systemically administered therapeutics. Furthermore, C6-ceramide-loaded nanoliposomes (CNLs), which rely upon the enhanced-permeation and retention (EPR) effect for delivery, have shown promise for treating solid tumors and are being tested in clinical trials. Here, our objective was to determine whether CNLs synergize with TA in the control of 4T1 breast tumors. CNL monotherapy of 4T1 tumors yielded significant intratumoral bioactive C6 accumulation by the EPR effect, but tumor growth was not controlled. TA increased bioactive C6 accumulation by ~ 12.5-fold over the EPR effect. In addition, TA + CNL caused shifts in long-chain to very-long-chain ceramide ratios (i.e., C16/24 and C18/C24) that could potentially contribute to tumor control. Nonetheless, these changes in intratumoral ceramide levels were still insufficient to confer tumor growth control beyond that achieved when combining with TA with control "ghost" nanoliposomes (GNL). While this lack of synergy could be due to increased "pro-tumor" sphingosine-1-phosphate (S1P) levels, this is unlikely because S1P levels exhibited only a moderate and statistically insignificant increase with TA + CNL. In vitro studies showed that 4T1 cells are highly resistant to C6, offering the most likely explanation for the inability of TA to synergize with CNL. Thus, while our results show that sparse scan TA is a powerful approach for markedly enhancing CNL delivery and generating "anti-tumor" shifts in long-chain to very-long-chain ceramide ratios, resistance of the tumor to C6 can still be a rate-limiting factor for some solid tumor types.


Subject(s)
Ceramides , Neoplasms , Humans , Ceramides/therapeutic use , Neoplasms/drug therapy , Sphingosine
2.
bioRxiv ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36993445

ABSTRACT

Sparse scan partial thermal ablation (TA) with focused ultrasound (FUS) may be deployed to treat solid tumors and increase delivery of systemically administered therapeutics. Further, C6-ceramide-loaded nanoliposomes (CNLs), which rely upon the enhanced permeation and retention (EPR) effect for delivery, have shown promise for treating solid tumors and are being tested in clinical trials. Here, our objective was to determine whether CNLs synergize with TA in the control of 4T1 breast tumors. CNL-monotherapy of 4T1 tumors yielded significant intratumoral bioactive C6 accumulation by the EPR effect, but tumor growth was not controlled. TA increased bioactive C6 accumulation by ∼12.5-fold over the EPR effect. In addition, TA+CNL caused shifts in long-chain to very-long-chain ceramide ratios (i.e., C16/24 and C18/C24) that could potentially contribute to tumor control. Nonetheless, these changes in intratumoral ceramide levels were still insufficient to confer tumor growth control beyond that achieved when combining with TA with control "ghost" nanoliposomes (GNL). While this lack of synergy could be due to increased "pro-tumor" sphingosine-1-phosphate (S1P) levels, this is unlikely because S1P levels exhibited only a moderate and statistically insignificant increase with TA+CNL. In vitro studies showed that 4T1 cells are highly resistant to C6, offering the most likely explanation for the inability of TA to synergize with CNL. Thus, while our results show that sparse scan TA is a powerful approach for markedly enhancing CNL delivery and generating "anti-tumor" shifts in long-chain to very-long-chain ceramide ratios, resistance of the tumor to C6 can still be a rate-limiting factor for some solid tumor types.

3.
Bioeng Transl Med ; 6(2): e10198, 2021 May.
Article in English | MEDLINE | ID: mdl-34027087

ABSTRACT

Focused ultrasound (FUS) mediated blood-brain barrier disruption (BBBD) targets the delivery of systemically-administered therapeutics to the central nervous system. Preclinical investigations of BBBD have been performed on different anesthetic backgrounds; however, the influence of the choice of anesthetic on the molecular response to BBBD is unknown, despite its potential to critically affect interpretation of experimental therapeutic outcomes. Here, using bulk RNA sequencing, we comprehensively examined the transcriptomic response of both normal brain tissue and brain tissue exposed to FUS-induced BBBD in mice anesthetized with either isoflurane with medical air (Iso) or ketamine/dexmedetomidine (KD). In normal murine brain tissue, Iso alone elicited minimal differential gene expression (DGE) and repressed pathways associated with neuronal signaling. KD alone, however, led to massive DGE and enrichment of pathways associated with protein synthesis. In brain tissue exposed to BBBD (1 MHz, 0.5 Hz pulse repetition frequency, 0.4 MPa peak-negative pressure), we systematically evaluated the relative effects of anesthesia, microbubbles, and FUS on the transcriptome. Of particular interest, we observed that gene sets associated with sterile inflammatory responses and cell-cell junctional activity were induced by BBBD, regardless of the choice of anesthesia. Meanwhile, gene sets associated with metabolism, platelet activity, tissue repair, and signaling pathways, were differentially affected by BBBD, with a strong dependence on the anesthetic. We conclude that the underlying transcriptomic response to FUS-mediated BBBD may be powerfully influenced by anesthesia. These findings raise considerations for the translation of FUS-BBBD delivery approaches that impact, in particular, metabolism, tissue repair, and intracellular signaling.

4.
Theranostics ; 10(16): 7436-7447, 2020.
Article in English | MEDLINE | ID: mdl-32642004

ABSTRACT

Background: Increasing evidence points to the critical role of extracellular vesicles (EVs) as molecular parcels that carry a diverse array of bioactive payloads for coordination of complex intracellular signaling. Focused ultrasound (FUS) hyperthermia is a technique for non-invasive, non-ionizing sublethal heating of cells in a near-instantaneous manner; while it has been shown to improve drug delivery and immunological recognition of tumors, its impact on EVs has not been explored to date. The goal of this study was to determine whether FUS impacts the release, proteomic profile, and immune-activating properties of tumor-derived EVs. Methods: Monolayered murine glioma cells were seeded within acoustically transparent cell culture chambers, and FUS hyperthermia was applied to achieve complete coverage of the chamber. Glioma-derived EVs (GEVs) were isolated for characterization by Nanoparticle Tracking Analysis, cryo-electron microscopy and mass spectrometry. An in vitro experimental setup was designed to further dissect the impact of GEVs on innate inflammation; immortalized murine dendritic cells (DCs) were pulsed with GEVs (either naïve or FUS hyperthermia-exposed) and assayed for production of IL-12p70, an important regulator of DC maturation and T helper cell polarization toward the interferon-γ-producing type 1 phenotype. Results: We confirmed that FUS hyperthermia significantly augments GEV release (by ~46%) as well as shifts the proteomic profile of these GEVs. Such shifts included enrichment of common EV-associated markers, downregulation of markers associated with cancer progression and resistance and modulation of inflammation-associated markers. When DCs were pulsed with GEVs, we noted that naïve GEVs suppressed IL-12p70 production by DCs in a GEV dose-dependent manner. In contrast, GEVs from cells exposed to FUS hyperthermia promoted a significant upregulation in IL-12p70 production by DCs, consistent with a pro-inflammatory stimulus. Conclusion: FUS hyperthermia triggers release of proteomically distinct GEVs that are capable of facilitating an important component of innate immune activation, lending both to a potential mechanism by which FUS interfaces with the tumor-immune landscape and to a role for GEV-associated biomarkers in monitoring response to FUS.


Subject(s)
Extracellular Vesicles/radiation effects , Glioma/therapy , High-Intensity Focused Ultrasound Ablation/methods , Hyperthermia, Induced/methods , Animals , Cell Line, Tumor , Cryoelectron Microscopy , Dendritic Cells/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Glioma/immunology , Glioma/pathology , Humans , Immunity, Innate , Interleukin-12/immunology , Interleukin-12/metabolism , Mice , Proteomics , T-Lymphocytes, Helper-Inducer/immunology , Tumor Escape/radiation effects , Up-Regulation/radiation effects
5.
Sci Adv ; 6(18): eaay1344, 2020 05.
Article in English | MEDLINE | ID: mdl-32494662

ABSTRACT

The delivery of systemically administered gene therapies to brain tumors is exceptionally difficult because of the blood-brain barrier (BBB) and blood-tumor barrier (BTB). In addition, the adhesive and nanoporous tumor extracellular matrix hinders therapeutic dispersion. We first developed the use of magnetic resonance image (MRI)-guided focused ultrasound (FUS) and microbubbles as a platform approach for transfecting brain tumors by targeting the delivery of systemically administered "brain-penetrating" nanoparticle (BPN) gene vectors across the BTB/BBB. Next, using an MRI-based transport analysis, we determined that after FUS-mediated BTB/BBB opening, mean interstitial flow velocity magnitude doubled, with "per voxel" flow directions changing by an average of ~70° to 80°. Last, we observed that FUS-mediated BTB/BBB opening increased the dispersion of directly injected BPNs through tumor tissue by >100%. We conclude that FUS-mediated BTB/BBB opening yields markedly augmented interstitial tumor flow that, in turn, plays a critical role in enhancing BPN transport through tumor tissue.


Subject(s)
Brain Neoplasms , Nanoparticles , Blood-Brain Barrier , Brain/diagnostic imaging , Brain Neoplasms/drug therapy , Drug Delivery Systems/methods , Humans , Magnetic Resonance Imaging/methods , Microbubbles , Transfection
6.
Proc Natl Acad Sci U S A ; 117(11): 5644-5654, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32123081

ABSTRACT

Treatment of many pathologies of the brain could be improved markedly by the development of noninvasive therapeutic approaches that elicit robust, endothelial cell-selective gene expression in specific brain regions that are targeted under MR image guidance. While focused ultrasound (FUS) in conjunction with gas-filled microbubbles (MBs) has emerged as a noninvasive modality for MR image-guided gene delivery to the brain, it has been used exclusively to transiently disrupt the blood-brain barrier (BBB), which may induce a sterile inflammation response. Here, we introduce an MR image-guided FUS method that elicits endothelial-selective transfection of the cerebral vasculature (i.e., "sonoselective" transfection), without opening the BBB. We first determined that activating circulating, cationic plasmid-bearing MBs with pulsed low-pressure (0.1 MPa) 1.1-MHz FUS facilitates sonoselective gene delivery to the endothelium without MRI-detectable disruption of the BBB. The degree of endothelial selectivity varied inversely with the FUS pressure, with higher pressures (i.e., 0.3-MPa and 0.4-MPa FUS) consistently inducing BBB opening and extravascular transfection. Bulk RNA sequencing analyses revealed that the sonoselective low-pressure regimen does not up-regulate inflammatory or immune responses. Single-cell RNA sequencing indicated that the transcriptome of sonoselectively transfected brain endothelium was unaffected by the treatment. The approach developed here permits targeted gene delivery to blood vessels and could be used to promote angiogenesis, release endothelial cell-secreted factors to stimulate nerve regrowth, or recruit neural stem cells.


Subject(s)
Blood-Brain Barrier/metabolism , Transfection/methods , Ultrasonic Waves , Animals , Blood-Brain Barrier/radiation effects , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Inbred C57BL , Microbubbles , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...