Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Technol ; 57(2): 884-895, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36580637

ABSTRACT

We quantify and compare three environmental impacts from inter-regional freight transportation in the contiguous United States: total mortality attributable to PM2.5 air pollution, racial-ethnic disparities in PM2.5-attributable mortality, and CO2 emissions. We compare all major freight modes (truck, rail, barge, aircraft) and routes (∼30,000 routes). Our study is the first to comprehensively compare each route separately and the first to explore racial-ethnic exposure disparities by route and mode, nationally. Impacts (health, health disparity, climate) per tonne of freight are the largest for aircraft. Among nonaircraft modes, per tonne, rail has the largest health and health-disparity impacts and the lowest climate impacts, whereas truck transport has the lowest health impacts and greatest climate impacts─an important reminder that health and climate impacts are often but not always aligned. For aircraft and truck, average monetized damages per tonne are larger for climate impacts than those for PM2.5 air pollution; for rail and barge, the reverse holds. We find that average exposures from inter-regional truck and rail are the highest for White non-Hispanic people, those from barge are the highest for Black people, and those from aircraft are the highest for people who are mixed/other race. Level of exposure and disparity among racial-ethnic groups vary in urban versus rural areas.


Subject(s)
Air Pollutants , Air Pollution , United States , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , Transportation , Environmental Health , Environmental Exposure
3.
Sci Total Environ ; 822: 153418, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35092782

ABSTRACT

In this paper, we develop a framework and metrics for estimating the impact of emission sources on regulatory compliance and human health for applications in air quality planning and life cycle impact assessment (LCIA). Our framework is based on a pollutant's characterization factor (CF) and three new metrics: Available Regulatory Capacity for Incremental Emissions (ARCIE), Source CF Ratio, and Activity Health Impact (AHI) Ratio. ARCIE can be used to assess whether a receptor location has capacity to accommodate additional source emissions while complying with regulatory limits. We present CF as a midpoint indicator of health impacts per unit mass of emitted pollutant. Source CF Ratio enables comparison of potential new-source locations based on human health impacts. The AHI Ratio estimates the health impacts of a pollutant in relation to the utilization of the source for each unit of product or service. These metrics can be applied to any pollutant, energy source sector (e.g., agriculture, electricity), source type (point, line, area), and spatial modeling domain (nation, state, city, region). We demonstrate these metrics through a case study of fine particulate (PM2.5) emissions from U.S. corn stover harvesting and local processing at various scales, representing steps in the biofuel production process. We model PM2.5 formation in the atmosphere using a novel reduced-complexity chemical transport model called the Intervention Model for Air Pollution (InMAP). Through this case study, we present the first area-source PM2.5 CFs that address the recommendations of several LCIA studies to establish spatially explicit CFs specific to an energy source sector or type. Overall, the framework developed in this work provides multiple new ways to consider the potential impacts of air emissions through spatially differentiated metrics.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Benchmarking , Biofuels , Environmental Monitoring , Humans , Particulate Matter/analysis , Vehicle Emissions/analysis
4.
Environ Sci Technol ; 53(23): 14010-14019, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31746196

ABSTRACT

Electricity generation is a large contributor to fine particulate matter (PM2.5) air pollution. However, the demographic distribution of the resulting exposure is largely unknown. We estimate exposures to and health impacts of PM2.5 from electricity generation in the US, for each of the seven Regional Transmission Organizations (RTOs), for each US state, by income and by race. We find that average exposures are the highest for blacks, followed by non-Latino whites. Exposures for remaining groups (e.g., Asians, Native Americans, Latinos) are somewhat lower. Disparities by race/ethnicity are observed for each income category, indicating that the racial/ethnic differences hold even after accounting for differences in income. Levels of disparity differ by state and RTO. Exposures are higher for lower-income than for higher-income, but disparities are larger by race than by income. Geographically, we observe large differences between where electricity is generated and where people experience the resulting PM2.5 health consequences; some states are net exporters of health impacts, other are net importers. For 36 US states, most of the health impacts are attributable to emissions in other states. Most of the total impacts are attributable to coal rather than other fuels.


Subject(s)
Air Pollutants , Air Pollution , Coal , Electricity , Environmental Exposure , Geography , Humans , Particulate Matter
5.
Environ Sci Technol ; 51(24): 14445-14452, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29152978

ABSTRACT

Environmental consequences of electricity generation are often determined using average emission factors. However, as different interventions are incrementally pursued in electricity systems, the resulting marginal change in emissions may differ from what one would predict based on system-average conditions. Here, we estimate average emission factors and marginal emission factors for CO2, SO2, and NOx from fossil and nonfossil generators in the Midcontinent Independent System Operator (MISO) region during years 2007-2016. We analyze multiple spatial scales (all MISO; each of the 11 MISO states; each utility; each generator) and use MISO data to characterize differences between the two emission factors (average; marginal). We also explore temporal trends in emissions factors by hour, day, month, and year, as well as the differences that arise from including only fossil generators versus total generation. We find, for example, that marginal emission factors are generally higher during late-night and early morning compared to afternoons. Overall, in MISO, average emission factors are generally higher than marginal estimates (typical difference: ∼20%). This means that the true environmental benefit of an energy efficiency program may be ∼20% smaller than anticipated if one were to use average emissions factors. Our analysis can usefully be extended to other regions to support effective near-term technical, policy and investment decisions based on marginal rather than only average emission factors.


Subject(s)
Electric Power Supplies , Environmental Pollutants , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...