Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 57(6): 1260-1273.e7, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38744292

ABSTRACT

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.


Subject(s)
Acetylcholine , Intestinal Mucosa , Animals , Acetylcholine/metabolism , Mice , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Choline O-Acetyltransferase/metabolism , Interleukin-13/metabolism , Interleukin-13/immunology , Mice, Knockout , Mice, Inbred C57BL , Helminthiasis/immunology , Helminthiasis/parasitology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Immunity, Innate , Nematospiroides dubius/immunology , Tuft Cells
2.
Proc Natl Acad Sci U S A ; 120(25): e2219431120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307458

ABSTRACT

Gut microbiota imbalance (dysbiosis) is increasingly associated with pathological conditions, both within and outside the gastrointestinal tract. Intestinal Paneth cells are considered to be guardians of the gut microbiota, but the events linking Paneth cell dysfunction with dysbiosis remain unclear. We report a three-step mechanism for dysbiosis initiation. Initial alterations in Paneth cells, as frequently observed in obese and inflammatorybowel diseases patients, cause a mild remodeling of microbiota, with amplification of succinate-producing species. SucnR1-dependent activation of epithelial tuft cells triggers a type 2 immune response that, in turn, aggravates the Paneth cell defaults, promoting dysbiosis and chronic inflammation. We thus reveal a function of tuft cells in promoting dysbiosis following Paneth cell deficiency and an unappreciated essential role of Paneth cells in maintaining a balanced microbiota to prevent inappropriate activation of tuft cells and deleterious dysbiosis. This succinate-tuft cell inflammation circuit may also contribute to the chronic dysbiosis observed in patients.


Subject(s)
Dysbiosis , Mucous Membrane , Humans , Inflammation , Paneth Cells , Succinates , Succinic Acid
3.
Front Physiol ; 11: 519382, 2020.
Article in English | MEDLINE | ID: mdl-33551824

ABSTRACT

Background: Endurance athletes are prone to bradyarrhythmias, which in the long-term may underscore the increased incidence of pacemaker implantation reported in this population. Our previous work in rodent models has shown training-induced sinus bradycardia to be due to microRNA (miR)-mediated transcriptional remodeling of the HCN4 channel, leading to a reduction of the "funny" (I f) current in the sinoatrial node (SAN). Objective: To test if genetic ablation of G-protein-gated inwardly rectifying potassium channel, also known as I KACh channels prevents sinus bradycardia induced by intensive exercise training in mice. Methods: Control wild-type (WT) and mice lacking GIRK4 (Girk4 -/-), an integral subunit of I KACh were assigned to trained or sedentary groups. Mice in the trained group underwent 1-h exercise swimming twice a day for 28 days, 7 days per week. We performed electrocardiogram recordings and echocardiography in both groups at baseline, during and after the training period. At training cessation, mice were euthanized and SAN tissues were isolated for patch clamp recordings in isolated SAN cells and molecular profiling by quantitative PCR (qPCR) and western blotting. Results: At swimming cessation trained WT mice presented with a significantly lower resting HR that was reversible by acute I KACh block whereas Girk4 -/- mice failed to develop a training-induced sinus bradycardia. In line with HR reduction, action potential rate, density of I f, as well as of T- and L-type Ca2+ currents (I CaT and I CaL ) were significantly reduced only in SAN cells obtained from WT-trained mice. I f reduction in WT mice was concomitant with downregulation of HCN4 transcript and protein, attributable to increased expression of corresponding repressor microRNAs (miRs) whereas reduced I CaL in WT mice was associated with reduced Cav1.3 protein levels. Strikingly, I KACh ablation suppressed all training-induced molecular remodeling observed in WT mice. Conclusion: Genetic ablation of cardiac I KACh in mice prevents exercise-induced sinus bradycardia by suppressing training induced remodeling of inward currents I f, I CaT and I CaL due in part to the prevention of miR-mediated transcriptional remodeling of HCN4 and likely post transcriptional remodeling of Cav1.3. Strategies targeting cardiac I KACh may therefore represent an alternative to pacemaker implantation for bradyarrhythmias seen in some veteran athletes.

SELECTION OF CITATIONS
SEARCH DETAIL