Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1375767, 2024.
Article in English | MEDLINE | ID: mdl-38646546

ABSTRACT

Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.


Subject(s)
Immunotherapy , Nanoparticles , Neoplasms , Photochemotherapy , Photosensitizing Agents , Tumor Microenvironment , Photochemotherapy/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Animals , Photosensitizing Agents/therapeutic use , Combined Modality Therapy , Nanomedicine/methods
2.
Cells ; 9(11)2020 11 07.
Article in English | MEDLINE | ID: mdl-33171765

ABSTRACT

Immune checkpoint inhibitors become a standard therapy for malignant melanoma. As immune checkpoint inhibitor monotherapies proved to have limited efficacy in significant portion of patients, it is envisaged that combination with other therapeutic modalities may improve clinical outcomes. We investigated the effect of combining photodynamic therapy (PDT) and TLR5 agonist flagellin-adjuvanted tumor-specific peptide vaccination (FlaB-Vax) on the promotion of PD-1 blockade-mediated melanoma suppression using a mouse B16-F10 implantation model. Using a bilateral mouse melanoma cancer model, we evaluated the potentiation of PD-1 blockade by the combination of peritumoral FlaB-Vax delivery and PDT tumor ablation. A photosensitizing agent, pheophorbide A (PhA), was used for laser-triggered photodynamic destruction of the primary tumor. The effect of combination therapy in conjunction with PD-1 blockade was evaluated for tumor growth and survival. The effector cytokines that promote the activation of CD8+ T cells and antigen-presenting cells in tumor tissue and tumor-draining lymph nodes (TDLNs) were also assayed. PDT and FlaB-Vax combination therapy induced efficacious systemic antitumor immune responses for local and abscopal tumor control, with a significant increase in tumor-infiltrating effector memory CD8+ T cells and systemic IFNγ secretion. The combination of PDT and FlaB-Vax also enhanced the infiltration of tumor antigen-reactive CD8+ T cells and the accumulation of migratory CXCL10-secreting CD103+ dendritic cells (DCs) presumably contributing to tumor antigen cross-presentation in the tumor microenvironment (TME). The CD8+ T-cell-dependent therapeutic benefits of PDT combined with FlaB-Vax was significantly enhanced by a PD-1-targeting checkpoint inhibitor therapy. Conclusively, the combination of FlaB-Vax with PDT-mediated tumor ablation would serve a safe and feasible combinatorial therapy for enhancing PD-1 blockade treatment of malignant melanoma.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cancer Vaccines/immunology , Flagellin/pharmacology , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Photochemotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorophyll/analogs & derivatives , Chlorophyll/pharmacology , Chlorophyll/therapeutic use , Combined Modality Therapy , Cross-Priming/drug effects , Humans , Immunologic Memory , Interferon-gamma/metabolism , Liposomes , Melanoma, Experimental/drug therapy , Mice, Inbred C57BL , Nanoparticles/chemistry , Programmed Cell Death 1 Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...