Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 25(5): 2792-2802, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602263

ABSTRACT

Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.


Subject(s)
Dicarboxylic Acids , Fungal Proteins , Furans , Lipase , Polyesters , Polymerization , Lipase/chemistry , Lipase/metabolism , Furans/chemistry , Fungal Proteins/chemistry , Dicarboxylic Acids/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis , Isomerism , Basidiomycota
2.
ACS Sustain Chem Eng ; 9(35): 11937-11949, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34513341

ABSTRACT

High-molecular-weight poly(butylene 2,4-furanoate) (2,4-PBF), an isomer of well-known poly(butylene 2,5-furanoate) (2,5-PBF), was synthesized through an eco-friendly solvent-free polycondensation process and processed in the form of an amorphous film by compression molding. Molecular characterization was carried out by NMR spectroscopy and GPC analysis, confirming the chemical structure and high polymerization degree. Thermal analyses evidenced a reduction of both glass-to-rubber transition and melting temperatures, as well as a detriment of crystallization capability, for 2,4-PBF with respect to 2,5-PBF. Nevertheless, it was possible to induce crystal phase formation by annealing treatment. Wide-angle X-ray scattering revealed that the crystal lattices developed in the two isomers are distinct from each other. The different isomerism affects also the thermal stability, being 2,4-PBF more thermally inert than 2,5-PBF. Functional properties, such as wettability, mechanical response, and gas barrier capability, were tested on both amorphous and semicrystalline 2,4-PBF films and compared with those of 2,5-PBF. Reduced hydrophilicity was determined for 2,4-isomer, in line with its lower average dipole moment, suggesting better chemical resistance to hydrolysis. Stress-strain tests have evidenced the higher flexibility and toughness of 2,4-PBF with respect to those of 2,5-PBF and the possibility of improving its mechanical resistance by annealing. Finally, the different isomerism deeply affects the gas barrier performance, being the O2- and CO2-transmission rates of 2,4-PBF 50 and 110 times lower, respectively, than those of 2,5-PBF. The gas barrier properties turned out to be outstanding under a dry atmosphere as well as in humid conditions, suggesting the presence of interchain hydrogen bonds. The gas blocking capability decreases after annealing because of the presence of disclination associated with the formation of crystals.

3.
RSC Adv ; 12(2): 947-970, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35425100

ABSTRACT

The use of plastics in a wide range of applications has grown substantially over recent decades, resulting in enormous growth in production volumes to meet demand. Though a wide range of biomass-derived chemicals and materials are available on the market, the production volumes of such renewable alternatives are currently not sufficient to replace their fossil-based analogues due to various factors, in particular cost-effectiveness. Hence, the majority of plastics are still industrially produced from fossil-based feedstocks. Moreover, various reports have clearly raised concern about the plastics that are not recycled at their end-of-life and instead end up in landfills or the oceans. To avoid further pollution of our planet, it is highly desirable to develop recycling processes that use plastic waste as feedstock. Chemical recycling processes could potentially offer a solution, since they afford monomers from which new polymers can be produced, with the same performance as virgin plastics. In this manuscript, the opportunities for using either chemical or biochemical (i.e., enzymatic) approaches in the depolymerization of polycondensation polymers for recycling purposes are reviewed. Our aim is to highlight the strategies that have been developed so far to break down plastic waste into monomers, providing the first step in the development of chemical recycling processes for plastic waste, and to create a renewed awareness of the need to valorize plastic waste by efficiently transforming it into virgin plastics.

4.
ChemSusChem ; 10(16): 3202-3211, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28590079

ABSTRACT

Building blocks of isohexides extended by one carbon atom at the 2- or 5-positions are now synthetically accessible by a convenient, selective, base-catalyzed epimerization of the corresponding dinitriles. Kinetic experiments using the strong organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) show that all three possible isohexide dinitrile isomers exist within a dynamic equilibrium. An epimerization mechanism based on density functional theory (DFT) calculations is proposed. Structural identification of all three possible isomers is based on NMR analysis and single crystal x-ray crystallography. DFT calculations confirm that the observed crystal structures are indeed the lowest energy conformers of these isohexide derivatives.


Subject(s)
Nitriles/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Catalysis , Green Chemistry Technology , Kinetics , Models, Molecular , Molecular Conformation , Quantum Theory , Stereoisomerism
5.
ChemSusChem ; 10(1): 277-286, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27557889

ABSTRACT

Bio-based furanics can be aromatized efficiently by sequential Diels-Alder (DA) addition and hydrogenation steps followed by tandem catalytic aromatization. With a combination of zeolite H-Y and Pd/C, the hydrogenated DA adduct of 2-methylfuran and maleic anhydride can thus be aromatized in the liquid phase and, to a certain extent, decarboxylated to give high yields of the aromatic products 3-methylphthalic anhydride and o- and m-toluic acid. Here, it is shown that a variation in the acidity and textural properties of the solid acid as well as bifunctionality offers a handle on selectivity toward aromatic products. The zeolite component was found to dominate selectivity. Indeed, a linear correlation is found between 3-methylphthalic anhydride yield and the product of (strong acid/total acidity) and mesopore volume of H-Y, highlighting the need for balanced catalyst acidity and porosity. The efficient coupling of the dehydration and dehydrogenation steps by varying the zeolite-to-Pd/C ratio allowed the competitive decarboxylation reaction to be effectively suppressed, which led to an improved 3-methylphthalic anhydride/total aromatics selectivity ratio of 80 % (89 % total aromatics yield). The incorporation of Pd nanoparticles in close proximity to the acid sites in bifunctional Pd/H-Y catalysts also afforded a flexible means to control aromatic products selectivity, as further demonstrated in the aromatization of hydrogenated DA adducts from other diene/dienophile combinations.


Subject(s)
Furans/chemistry , Palladium/chemistry , Carbon/chemistry , Catalysis , Hydrogen-Ion Concentration , Steam , Zeolites/chemistry
6.
Angew Chem Int Ed Engl ; 55(4): 1368-71, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26684008

ABSTRACT

Renewable aromatics can be conveniently synthesized from furanics by introducing an intermediate hydrogenation step in the Diels-Alder (DA) aromatization route, to effectively block retro-DA activity. Aromatization of the hydrogenated DA adducts requires tandem catalysis, using a metal-based dehydrogenation catalyst and solid acid dehydration catalyst in toluene. Herein it is demonstrated that the hydrogenated DA adducts can instead be conveniently converted into renewable aromatics with up to 80% selectivity in a solid-phase reaction with shorter reaction times using only an acidic zeolite, that is, without solvent or dehydrogenation catalyst. Hydrogenated adducts from diene/dienophile combinations of (methylated) furans with maleic anhydride are efficiently converted into renewable aromatics with this new route. The zeolite H-Y was found to perform the best and can be easily reused after calcination.

7.
ChemSusChem ; 8(18): 3052-6, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26235971

ABSTRACT

A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate.


Subject(s)
Biomass , Furans/chemistry , Green Chemistry Technology/methods , Phthalic Anhydrides/chemistry , Hydrogenation
8.
ChemSusChem ; 8(1): 67-72, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25382180

ABSTRACT

New carbohydrate-based polyesters were prepared from isoidide-2,5-dimethanol (extended isoidide, XII) through melt polymerization with dimethyl esters of terephthalic acid (TA) and furan-2,5-dicarboxylic acid (FDCA), yielding semi-crystalline prepolymers. Subsequent solid-state post-condensation (SSPC) gave high molecular weight (Mn =30 kg mol(-1) for FDCA) materials, the first examples of high Mn , semi-aromatic homopolyesters containing isohexide derivatives obtained via industrially relevant procedures. NMR spectroscopy showed that the stereo-configuration of XII was preserved under the applied conditions. The polyesters are thermally stable up to 380 °C. The TA- and FDCA-based polyesters have high Tg (105 °C and 94 °C, resp.) and Tm (284 °C and 250 °C, resp.) values. Its reactivity, stability, and ability to afford high Tg and Tm polyesters make XII a promising diol for the synthesis of engineering polymers.


Subject(s)
Carbohydrates/chemistry , Engineering , Glycols/chemistry , Plastics/chemistry , Polyesters/chemistry
9.
ChemSusChem ; 4(12): 1823-9, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22121062

ABSTRACT

We report an efficient three-step strategy for synthesizing rigid, chiral isohexide diamines derived from 1,4:3,6-dianhydrohexitols. These biobased chiral building blocks are presently the subject of several investigations (in our and several other groups) because of their application in high-performance biobased polymers, such as polyamides and polyurethanes. Among the three possible stereo-isomers, dideoxy-diamino isoidide and dideoxy-diamino isosorbide can be synthesized from isomannide and isosorbide respectively in high yield with absolute stereo control. Furthermore, by using this methodology dideoxy-amino isomannide-a tricyclic adduct-was obtained starting from isoidide in high yield. Our improved synthetic route is a valuable advance towards meeting scale and purity demands for evaluating the properties of new biobased performance materials, which will benefit the development of these plastics.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Diamines/chemical synthesis , Isosorbide/chemistry , Conservation of Natural Resources , Magnetic Resonance Spectroscopy , Polymers , Stereoisomerism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...