Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(48): 26144-26151, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38053495

ABSTRACT

Electrocatalysis expands the ability to generate industrially relevant chemicals locally and on-demand with intermittent renewable energy, thereby improving grid resiliency and reducing supply logistics. Herein, we report the feasibility of using molecular copper boron-imidazolate cages, BIF-29(Cu), to enable coupling between the electroreduction reaction of CO2 (CO2RR) with NO3- reduction (NO3RR) to produce urea with high selectivity of 68.5% and activity of 424 µA cm-2. Remarkably, BIF-29(Cu) is among the most selective systems for this multistep C-N coupling to-date, despite possessing isolated single-metal sites. The mechanism for C-N bond formation was probed with a combination of electrochemical analysis, in situ spectroscopy, and atomic-scale simulations. We found that NO3RR and CO2RR occur in tandem at separate copper sites with the most favorable C-N coupling pathway following the condensation between *CO and NH2OH to produce urea. This work highlights the utility of supramolecular metal-organic cages with atomically discrete active sites to enable highly efficient coupling reactions.

2.
Chemistry ; 29(58): e202300796, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37519094

ABSTRACT

Herein, we report the synthesis and characterization of two manganese tricarbonyl complexes, MnI (HL)(CO)3 Br (1 a-Br) and MnI (MeL)(CO)3 Br (1 b-Br) (where HL=2-(2'-pyridyl)benzimidazole; MeL=1-methyl-2-(2'-pyridy)benzimidazole) and assayed their electrocatalytic properties for CO2 reduction. A redox-active pyridine benzimidazole ancillary ligand in complex 1 a-Br displayed unique hydrogen atom transfer ability to facilitate electrocatalytic CO2 conversion at a markedly lower reduction potential than that observed for 1 b-Br. Notably, a one-electron reduction of 1 a-Br yields a structurally characterized H-bonded binuclear Mn(I) adduct (2 a') rather than the typically observed Mn(0)-Mn(0) dimer, suggesting a novel method for CO2 activation. Combining advanced electrochemical, spectroscopic, and single crystal X-ray diffraction techniques, we demonstrate the use of an H-atom responsive ligand may reveal an alternative, low-energy pathway for CO2 activation by an earth-abundant metal complex catalyst.

3.
J Chem Phys ; 158(21)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37278475

ABSTRACT

We present a Raman scattering spectroscopic study of boron imidazolate metal-organic frameworks (BIFs) with three different magnetic metal ions and one non-magnetic in a wide frequency range from 25 to 1700 cm-1, which covers local vibrations of the imidazolate linkers as well as collective lattice vibrations. We show that the spectral region above 800 cm-1 belongs to the local vibrations of the linkers, which have the same frequencies for the studied BIFs without any dependence on the structure of the BIFs and are easily interpreted based on the spectra of imidazolate linkers. In contrast, collective lattice vibrations, observed below 100 cm-1, show a distinction between cage and two-dimensional BIFs structures, with a weak dependence on the metal node. We identify the range of vibrations around 200 cm-1, which are distinct for each metal-organic framework, depending on a metal node. Our work demonstrates the energy hierarchy in the vibrational response of BIFs.

4.
Chemistry ; 29(40): e202300821, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37156723

ABSTRACT

Lithium-sulfur batteries are promising candidates for next-generation energy storage devices due to their outstanding theoretical energy density. However, they suffer from low sulfur utilization and poor cyclability, greatly limiting their practical implementation. Herein, we adopted a phosphate-functionalized zirconium metal-organic framework (Zr-MOF) as a sulfur host. With their porous structure, remarkable electrochemical stability, and synthetic versatility, Zr-MOFs present great potential in preventing soluble polysulfides from leaching. Phosphate groups were introduced to the framework post-synthetically since they have shown a strong affinity towards lithium polysulfides and an ability to facilitate Li ion transport. The successful incorporation of phosphate in MOF-808 was demonstrated by a series of techniques including infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy, and X-ray pair distribution function analysis. When employed in batteries, phosphate-functionalized Zr-MOF (MOF-808-PO4) exhibits significantly enhanced sulfur utilization and ion diffusion compared to the parent framework, leading to higher capacity and rate capability. The improved capacity retention and inhibited self-discharge rate also demonstrate effective polysulfide encapsulation utilizing MOF-808-PO4. Furthermore, we explored their potential towards high-density batteries by examining the cycling performance at various sulfur loadings. Our approach to correlate structure with function using hybrid inorganic-organic materials offers new chemical design strategies for advancing battery materials.

5.
Chem Commun (Camb) ; 58(25): 4005-4015, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35258050

ABSTRACT

Despite great promise as next-generation high-capacity energy storage devices, lithium-sulfur batteries still face technical challenges in long-term cyclability. With their porous structures and facile synthesis, metal-organic frameworks (MOFs) are tunable platforms for understanding polysulfide redox and can serve as effective sulfur hosts for lithium-sulfur batteries. This feature article describes our design strategies to tailor MOF properties such as polysulfide affinity, ionic conductivity, and porosity for promoting active material utilization and charge transport efficiency. We also present engineering approaches for implementing MOF-based sulfur cathodes for lithium-sulfur batteries with high volumetric density and under low temperature operation. Our studies provide fundamental insights into sulfur-host interactions and polysulfide electrochemistry in the presence of porous matrices, inspiring future designs of advanced batteries.

6.
Acc Chem Res ; 55(4): 504-515, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35119260

ABSTRACT

The electrochemical conversion of carbon dioxide to value-added chemicals provides an environmentally benign alternative to current industrial practices. However, current electrocatalytic systems for the CO2 reduction reaction (CO2RR) are not practical for industrialization, owing to poor specific product selectivity and/or limited activity. Interfacial engineering presents a versatile and effective method to direct CO2RR selectivity by fine-tuning the local chemical dynamics. This Account describes interfacial design strategies developed in our laboratory that use electrolyte engineering and porous carbon materials to modify the local composition at the electrode-electrolyte interface.Our first strategy for influencing surface reactivity is to perturb the electrochemical double layer by tuning the electrolyte composition. We approached this investigation by considering how charged molecular additives can organize at the electrode surface and impact CO2 activation. Using a combination of advanced electrochemical techniques and in situ vibrational spectroscopy, we show that the surfactant properties (the identity of the headgroup, alkyl chain length, and concentration) as well as the electrolyte cation identity can affect how surfactant molecules assemble at a biased electrode. The interplay between the electrolyte cations and the surfactant additives can be regulated to favor specific carbon products, such as HCOO-, and suppress the parasitic hydrogen evolution reaction (HER). Together, our findings highlight how molecular assemblies can be used to design selective electrocatalytic systems.In addition to the electrolyte design, the local spatial confinement of reaction intermediates presents another strategy to direct CO2RR selectivity. We were interested in uncovering the role of porous carbon-supported catalysts toward selective carbon product formation. In our initial study, we show that carbon porosity can be optimized to enhance C2H4 and CO selectivity in a series of Cu catalysts embedded in a tunable carbon aerogel matrix. These results suggested that local confinement of the active surface plays a role in CO2 activation and motivated an investigation into probing how this phenomenon can be translated to a planar Cu electrode. Our findings show that carbon modifiers facilitated surface reconstruction and regulated CO2 diffusion to suppress HER and improve the C2-3 product selectivity. Given the ubiquity of carbon materials in catalysis, this work demonstrates that carbon plays an active role in regulating selectivity by restricting the diffusion of substrate and reaction intermediates. Our work in tuning the composition of the electrochemical double layer for increased CO2RR selectivity demonstrates the potential versatility in boosting catalytic performance across an array of catalytic systems.


Subject(s)
Carbon Dioxide , Electrochemical Techniques , Carbon Dioxide/chemistry , Catalysis , Electrodes , Surface-Active Agents/chemistry
7.
ACS Appl Mater Interfaces ; 13(43): 50862-50868, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34670080

ABSTRACT

Demands for energy storage and delivery continue to rise worldwide, making it imperative that reliable performance is achievable in diverse climates. Lithium-sulfur (Li-S) batteries offer a promising alternative to lithium-ion batteries owing to their substantially higher specific capacity and energy density. However, improvements to Li-S systems are still needed in low-temperature environments where polysulfide clustering and solubility limitations prohibit complete charge/discharge cycles. We address these issues by introducing thiophosphate-functionalized metal-organic frameworks (MOFs), capable of tethering polysulfides, into the cathode architecture. Compared to cells with the parent MOFs, cells containing the functionalized MOFs exhibit greater capacity delivery and decreased polarization for a range of temperatures down to -10 °C. We conduct thorough electrochemical analyses to ascertain the origins of performance differences and report an altered Li-S redox mechanism enabled by the thiophosphate moiety. This investigation is the first low-temperature Li-S study using MOF additives and represents a promising direction in enabling energy storage in extreme environments.

8.
Inorg Chem ; 60(17): 13011-13020, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34492759

ABSTRACT

Electrocatalytic reduction of carbon dioxide (CO2) by transition-metal catalysts is an attractive means for storing renewably sourced electricity in chemical bonds. Metal coordination compounds represent highly tunable platforms ideal for studying the fundamental stepwise transformations of CO2 into its reduced products. However, metal complexes can decompose upon extended electrolysis and form chemically distinct molecular species or, in some cases, catalytically active electrode deposits. Deciphering the degradative pathways is important for understanding the nature of the active catalyst and designing robust metal complexes for small-molecule activation. Herein, we present a new dicationic rhenium bipyridyl complex capable of multielectron ligand-centered reductions electrochemically. Our in-depth experimental and computational study provides mechanistic insight into an unusual reductively induced Hoffman-type elimination. We identify benzylic tertiary ammonium groups as an electrolytically susceptible moiety and propose key intermediates in the degradative pathway. This investigation highlights the complex interplay between the ligand and metal ion and will guide the future design of metal-organic catalysts.

9.
Inorg Chem ; 60(10): 6853-6854, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33993698
10.
ACS Cent Sci ; 6(10): 1671-1684, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33145407

ABSTRACT

Metal-organic and covalent-organic frameworks can serve as a bridge between the realms of homo- and heterogeneous catalytic systems. While there are numerous molecular complexes developed for electrocatalysis, homogeneous catalysts are hindered by slow catalyst diffusion, catalyst deactivation, and poor product yield. Heterogeneous catalysts can compensate for these shortcomings, yet they lack the synthetic and chemical tunability to promote rational design. To narrow this knowledge gap, there is a burgeoning field of framework-related research that incorporates molecular catalysts within porous architectures, resulting in an exceptional catalytic performance as compared to their molecular analogues. Framework materials provide structural stability to these catalysts, alter their electronic environments, and are easily tunable for increased catalytic activity. This Outlook compares molecular catalysts and corresponding framework materials to evaluate the effects of such integration on electrocatalytic performance. We describe several different classes of molecular motifs that have been included in framework materials and explore how framework design strategies improve on the catalytic behavior of their homogeneous counterparts. Finally, we will provide an outlook on new directions to drive fundamental research at the intersection of reticular-and electrochemistry.

11.
ACS Appl Mater Interfaces ; 12(41): 45929-45935, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32931247

ABSTRACT

Selectivity for C-C coupled products remains a major challenge for electrochemical CO2 reduction. Herein, we report a facile method by modifying a Cu foil surface with a layer of porous carbon. The structure of carbon has a major influence on C1 and C2,3 product selectivity. A carbon aerogel modifier leads to higher C2,3 product formation than that of a carbon black modifier, demonstrating the non-innocent role of carbon materials. In both cases, major surface reconstruction on the Cu foil-such as pitting and particle formation-is observed during electrocatalysis. In addition, the restructured Cu surface shows distinctly lower activity toward CO2 reduction when the carbon modifier is removed. This is likely due to the fact that the carbon modifiers influence the product distribution by (i) modulating the local pH and CO2 concentration by serving as a highly porous and hydrophobic barrier, and (ii) restructuring the metal surface that generates more active sites. Our findings illustrate that the carbon in carbon-based catalysts can have an disproportionate role in directing product formation in electrocatalytic carbon dioxide reduction.

12.
ACS Appl Mater Interfaces ; 12(33): 37173-37181, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32814388

ABSTRACT

In an age of rapid acceleration toward next-generation energy storage technologies, lithium-sulfur (Li-S) batteries offer the desirable combination of low weight and high specific energy. Metal-organic frameworks (MOFs) have been recently studied as functionalizable platforms to improve Li-S battery performance. However, many MOF-enabled Li-S technologies are hindered by low capacity retention and poor long-term performance due to low electronic conductivity. In this work, we combine the advantages of a Zr-based MOF-808 loaded with sulfur as the active material with a graphene/ethyl cellulose additive, leading to a high-density nanocomposite electrode requiring minimal carbon. Our electrochemical results indicate that the nanocomposites deliver enhanced specific capacity over conventionally used carbon/binder mixtures, and postsynthetic modification of the MOF with lithium thiophosphate results in further improvement. Furthermore, the dense form factor of the sulfur-loaded MOF-graphene nanocomposite electrodes provides high volumetric capacity compared to other works with significantly more carbon additives. Overall, we have demonstrated a proof-of-concept paradigm where graphene nanosheets facilitate improved charge transport because of enhanced interfacial contact with the active material. This materials engineering approach can likely be extended to other MOF systems, contributing to an emerging class of two-dimensional nanomaterial-enabled Li-S batteries.

13.
J Phys Chem Lett ; 11(14): 5457-5463, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32524821

ABSTRACT

The presence of cetyltrimethylammonium bromide (CTAB) near the surface of a Cu electrode promotes the electrochemical reduction of CO2 to fuels. CTAB increases the CO2 reduction rate by as much as 10× and decreased the HER rate by 4×, leading to ∼75% selectivity toward the reduction of CO2. Surface enhanced infrared absorption spectroscopy (SEIRAS) was used to probe the effects of CTAB adsorption on the structure of interfacial water and CO2 reduction intermediates. HER suppression was found to arise from the displacement of interfacial water molecules from CTAB adsorption within the double layer. The enhanced CO2 reduction rate can be correlated to an increased population of atop-bound CO and the emergence of a low frequency atop-CO band. These results unravel the role of additives in improving CO2-to-fuels electrocatalysis and establishing this as a powerful methodology for directing product selectivity.


Subject(s)
Carbon Dioxide/chemistry , Cetrimonium/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Adsorption , Copper/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Oxidation-Reduction , Spectrophotometry, Infrared/methods
14.
J Phys Chem B ; 124(7): 1311-1321, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31985221

ABSTRACT

Surfactants modulate interfacial processes. In electrochemical CO2 reduction, cationic surfactants promote carbon product formation and suppress hydrogen evolution. The interfacial field produced by the surfactants affects the energetics of electrochemical intermediates, mandating their detailed understanding. We have used two complementary tools-vibrational Stark shift spectroscopy which probes interfacial fields at molecular length scales and electrochemical impedance spectroscopy (EIS) which probes the entire double layer-to study the electric fields at metal-surfactant interfaces. Using a nitrile as a probe, we found that at open-circuit potentials, cationic surfactants produce larger effective interfacial fields (∼-1.25 V/nm) when compared to anionic surfactants (∼0.4 V/nm). At a high bulk surfactant concentration, the surface field reaches a terminal value, suggesting the formation of a full layer, which is also supported by EIS. We propose an electrostatic model that explains these observations. Our results help in designing tailored surfactants for influencing electrochemical reactions via the interfacial field effect.

15.
Angew Chem Int Ed Engl ; 59(2): 763-768, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31665559

ABSTRACT

We report the synthesis of a set of 2D metal-organic frameworks (MOFs) constructed with organosilicon-based linkers. These oligosilyl MOFs feature linear Sin Me2n (C6 H4 CO2 H)2 ligands (lin-Sin , n=2, 4) connected by Cu paddlewheels. The stacking arrangement of the 2D sheets is dictated by van der Waals interactions and is tunable by solvent exchange, leading to reversible structural transformations between many crystalline and amorphous phases.

16.
J Am Chem Soc ; 141(44): 17891-17899, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31600066

ABSTRACT

Zirconium metal-organic frameworks (Zr-MOFs) are renowned for their extraordinary stability and versatile chemical tunability. Several Zr-MOFs demonstrate a tolerance for missing linker defects, which create "open sites" that can be used to bind guest molecules on the node cluster. Herein, we strategically utilize these sites to stabilize reactive lithium thiophosphate (Li3PS4) within the porous framework for targeted application in lithium-sulfur (Li-S) batteries. Successful functionalization of the Zr-MOF with PS43- is confirmed by an array of techniques including NMR, XPS, and Raman spectroscopy, X-ray pair distribution function analysis, and various elemental analyses. During electrochemical cycling, we find that even a low incorporation extent of lithium thiophosphate in Zr-MOFs improves sulfur utilization and polysulfide encapsulation to deliver a sustainably high capacity over prolonged cycling. The functionalized MOF additives also prevent cell damage under abusive cycling conditions and recover high capacities when the cell is returned to lower charge/discharge rates, imperative for future energy storage devices. Our unique approach marries the promising chemical attributes of the purely inorganic Li3PS4 with the stability and high surface area of MOFs, creating a Li-S cathode architecture with a performance beyond the sum of its component parts. More broadly, this novel functionalization strategy opens new avenues for facile syntheses of "designer materials" where chemical components from discrete disciplines can be united and tailored for specific applications.

17.
Chem Commun (Camb) ; 55(12): 1825-1828, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30672518

ABSTRACT

The non-innocence of diamidodipyrrin is explored in a series of cobaltous complexes with novel binding motifs. By varying the coordination modes, a reversible one-electron reduction is remarkably shifted by nearly 200 mV in a single metal-ligand platform. Our study illustrates a new strategy for modifying the redox activity of porphyrin-like scaffolds.

18.
ACS Appl Mater Interfaces ; 11(2): 2159-2167, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30576597

ABSTRACT

Lithium sulfur (Li-S) battery technology is one of the most promising candidates for next-generation energy storage devices; however, it is still hindered by limited capacity yield and poor long-term stability. The complexity of these devices has hindered efforts to study electrochemical determinants of battery performance, impeding advancement of the field. Due to the ease of functionalization, metal-organic frameworks (MOFs) are unique platforms to explore such reactions, where integration of defects into the crystalline structure provides a convenient method for introducing synthetic handles. In Zr-based MOFs such as UiO-66, the engineered defect sites contain acidic protons that can be replaced with lithium ions, transforming defected MOFs into a range of materials with tunable lithium content. Our results demonstrate the capability of this facile lithiation procedure to create novel cathode additives and evaluate their influence on Li-S battery performance. By improving ionic conductivity and dispersion of sulfur species, lithiated MOFs enhance both sulfur utilization and capacity retention at a variety of cycling rates compared to the as-synthesized MOFs. Our general synthetic strategy has the potential to be applied to technologies beyond MOFs, including polymeric and inorganic materials. Ultimately, we illustrate that defected MOFs can be used to systematically control lithiation, currently unprecedented in conventional inorganic materials, and provide a window to examine heterogeneous reactions relevant to energy conversion and storage.

19.
Chem Sci ; 6(2): 1570-1577, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-29560244

ABSTRACT

Pt-decorated carbon nanotubes (Pt-CNTs) were used to enhance proton reduction and hydrogen evolution in solid acid electrochemical cells based on the proton-conducting electrolyte CsH2PO4. The carbon nanotubes served as interconnects to the current collector and as a platform for interaction between the Pt and CsH2PO4, ensuring minimal catalyst isolation and a large number density of active sites. Particle size matching was achieved by using electrospray deposition to form sub-micron to nanometric CsH2PO4. A porous composite electrode was fabricated from electrospray deposition of a solution of Pt-CNTs and CsH2PO4. Using AC impedance spectroscopy and cyclic voltammetry, the total electrode overpotential corresponding to proton reduction and hydrogen oxidation of the most active electrodes containing just 0.014 mg cm-1 of Pt was found to be 0.1 V (or 0.05 V per electrode) at a current density of 42 mA cm-2 for a measurement temperature of 240 °C and a hydrogen-steam atmosphere. The zero bias electrode impedance was 1.2 Ω cm2, corresponding to a Pt utilization of 61 S mg-1, a 3-fold improvement over state-of-the-art electrodes with a 50× decrease in Pt loading.

20.
J Am Chem Soc ; 135(38): 14413-24, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24033186

ABSTRACT

The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene-amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni((Pr)bimiq1)](2+) (1c, where (Pr)bimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (E(cat) = -1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s(-1), respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.


Subject(s)
Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Coordination Complexes/chemistry , Isoquinolines/chemistry , Light , Nickel , Carbon Dioxide/radiation effects , Carbon Monoxide/radiation effects , Catalysis , Iridium , Oxidation-Reduction , Pyridines/chemistry , Solar Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...