Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 302(Pt B): 114062, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34773783

ABSTRACT

Environmental impact associated with production and consumption of pulses in the United States was evaluated using life cycle assessment (LCA). The system boundary was set to cradle-to-grave with a functional unit of 60 g (dry basis) of pulses consumed in a US household. Varieties of pulses modeled in the study included field pea (Pisum sativum), lentil (Lens culinaris), chickpea (Cicer arietinum), and dry bean. Three methods of cooking pulses at the consumer stage tested in the study were cooking in open vessel on electric cooking range (OVC), cooking in stovetop pressure cooker on electric cooking range (SPC), and cooking in electric pressure cooker (EPC). OVC formed the base scenario against which all other scenarios were compared. The environmental impact of pulses varied with type of pulse crop, cooking method, and the batch size. Consumption of approximately 60 g of dry pulses resulted in the greatest environmental impact for OVC. The consumer stage contributed at least 83, 81, 76, 75, and 87 percent for global warming potential (GWP), fossil resource scarcity (FRS), water consumption (WC), freshwater eutrophication (FE), and marine eutrophication (ME), respectively for this scenario. EPC resulted in the greatest decrease in the environmental impact, compared to OVC, for GWP, FRS, FE, and ME for all pulse varieties, which was validated in the uncertainty analysis. SPC, on the other hand, decreased the impact across these categories only for chickpea and dry bean. The uncertainty analysis suggested that the differences associated with cooking methods in the mean land use and water consumption scores of pulses were statistically non-significant. The impact categories were also highly sensitive to the mass of pulses cooked in a batch. Increasing the reference flow in OVC to 1 kg decreased the environmental impact of pulses by 49-87 percent for all impact categories, excluding land use. Overall, the study identified the consumer stage as the hotspot for environmental impact in the supply chain of pulses in the United States. The large contribution of the consumer stage to the overall environmental impact of pulses was attributed to electricity consumption for cooking and associated upstream emissions.


Subject(s)
Cooking , Global Warming , Animals , Environment , Eutrophication , Life Cycle Stages , United States
2.
Animals (Basel) ; 11(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34679942

ABSTRACT

Agricultural production systems have been identified as significant sources of anthropogenic impacts across several environmental key performance indicators (KPIs). Livestock husbandry is growing in global importance as the demand for high-quality protein continues to increase. It is therefore imperative to have sustainable intensification technologies, and we describe one such technology. The purpose of this study was to evaluate the performance of Enogen® corn grain compared to conventional feed corn when used as an ingredient in backgrounding and feed yard beef rations using life cycle assessment. The project was conducted in compliance with ISO standards, including a third-party panel review. A series of scenarios were analyzed to evaluate the impacts of boundaries and functional units on the outcomes. The use of Enogen corn as a feed component in beef production showed a quantifiable benefit in terms of the sustainability metrics of primary interest in this study. The gate-to-gate improvements at the feed yard and backgrounding based on full field trial datasets from field trials conducted at Kansas State University and at the University of Nebraska, Lincoln showed 3.4 and 5.8 percent reductions in Global Warming Potential, respectively. It is particularly noteworthy that the improvement in feed conversion ratio at the feed yard results in approximately 6 percent improvement in the four key environmental performance metrics of beef production, which demonstrates potential for the sector to meet its sustainability targets.

5.
Biotechnol Biofuels ; 14(1): 166, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34353363

ABSTRACT

BACKGROUND: The objective of this study was to evaluate the environmental impact of the production of a range of liquid biofuels produced from the combination of fermenting sorghum stalk juice (bioethanol) and the pyrolysis/hydrotreatment of residual bagasse (renewable gasoline and diesel). Life cycle impact assessment (LCIA) was performed on a farm-to-wheels system that included: (i) sorghum farming, (ii) juice extraction, (iii) juice fermenting, (iv) bagasse pretreatment, (v) bagasse thermochemical treatment (pyrolysis, hydroprocessing, and steam reforming), and (vi) typical passenger vehicle operation. LCIA results were compared to those of petroleum fuels providing the equivalent functional unit-cumulative kilometers driven by spark ignition direct injection (SIDI) vehicles utilizing either renewable gasoline or 'bioE85-a blend of bioethanol and renewable gasoline,' and a compression ignition direct injection (CIDI) vehicle utilizing renewable diesel produced from 76 tons of harvested sweet sorghum (1 ha). RESULTS: Sweet sorghum biofuels resulted in a 48% reduction climate change impact and a 52% reduction in fossil fuel depletion. Additionally, reduced impacts in ozone depletion and eutrophication were found (67% and 47%, respectively). Petroleum fuels had lower impacts for the categories of non-carcinogenic health impact, smog, respiratory effects, and ecotoxicity, showing tradeoffs between sorghum and petroleum fuels. CONCLUSION: Overall, sorghum biofuels provide advantages in environmental impact categories including global warming potential, fossil fuel depletion and eutrophication, showing potential for sorghum as a promising second-generation feedstock for fuel.

7.
Water Environ Res ; 93(10): 2149-2168, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34022089

ABSTRACT

This field case study reports findings on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water carried out at an aquaculture farm and two irrigation locations in Hawaii. We used a flow cell incorporating PtRu/graphite anode and graphite cathode for the disinfection/ammonia removal from aquaculture wastewater, and a flow cell assembled with graphite plates as both anode and cathode for the disinfection of irrigation water. The removal of ammonia followed the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode. Ammonia removal rate increased with the increase in NaCl concentration, applied current density, or flow rate. The disinfection of aquaculture wastewater can be readily achieved due to the presence of highly germicidal free chlorine species. The disinfection of irrigation water was realized without the addition of chemicals. The disinfection mechanism was attributed to the formation of free chlorine from the anodic oxidation of chloride ions naturally occurring in the water sources. The disinfection efficiency decreased with increasing organic matter concentration. In addition to the flow cell approach, we also successfully demonstrated the disinfection of irrigation water by adding electrolyzed NaCl solution or purging with a mixture of air and chlorine gas, both of which were generated on-site. PRACTITIONER POINTS: Field case study on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water was carried out in Hawaii. Electrochemical flow cell assembled with PtRu/graphite anode and graphite cathode effectively removes ammonia from aquaculture wastewater. Ammonia removal proceeds via the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode. Electrochemical flow cell assembled with commercial graphite electrodes enables fast disinfection of coliform bacteria and E. coli. The primary disinfection mechanism is through chlorine species electro-generated from chloride oxidation at the graphite anode.


Subject(s)
Wastewater , Water Purification , Ammonia , Aquaculture , Disinfection , Electrodes , Escherichia coli , Hawaii , Oxidation-Reduction , Water
8.
Sci Total Environ ; 778: 146319, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33721638

ABSTRACT

Global dairy and swine production growth has increased significantly over the past decades, resulting in higher manure generation in certain areas and environmental concerns. Therefore, manure management is an essential focus for farmers and environmental regulators. Systematic selection of manure management practices can provide environmental benefits, but accounting for local constraints, economics and farming practices are significant challenges. All these factors drive the selection of appropriate manure management systems (MMSs). MMSs are highly varied for their design, partly due to individual farm settings, geography, and the end-use applications of manure. However, the benefits of technological advancements in MMSs provide higher manure treatment efficiency and co-production of value-added products such as recycled water, fiber, sand bedding, and nutrient-rich bio-solids, among others. To achieve higher environmental benefits, advanced manure treatment technologies have to be implemented, which comes with additional costs. So, there is a tradeoff between environmental benefits and cost. With the above prospects, this article reviews: 1) the different treatment technologies used in dairy and swine farms, 2) the life cycle assessment (LCA) method's importance in evaluating various treatment technologies for better environmental returns, and 3) decision support tools (DST) and their significance in MMSs prioritization. We found considerable heterogeneity in the available datasets, mainly on crucial parameters such as water consumption, types and amount of bedding materials, manure removal frequency, manure treatment technologies, and the extent of resource recovery. Thus, suitable environmental impact assessment inventory models are needed to evaluate a more comprehensive range of treatment technologies in MMSs, representing the spatial and farming system heterogeneities. There is also a need for user-friendly DST with adjustable inputs for the functional components of MMSs and evaluation criteria, which can rapidly evaluate the techno-economic feasibility of alternative systems.

9.
Nat Food ; 2(11): 862-872, 2021 11.
Article in English | MEDLINE | ID: mdl-37117500

ABSTRACT

Food systems are increasingly challenged to meet growing demand for specialty crops due to the effects of climate change and increased competition for resources. Here, we apply an integrated methodology that includes climate, crop, economic and life cycle assessment models to US potato and tomato supply chains. We find that supply chains for two popular processed products in the United States, French fries and pasta sauce, will be remarkably resilient, through planting adaptation strategies that avoid higher temperatures. Land and water footprints will decline over time due to higher yields, and greenhouse gas emissions can be mitigated by waste reduction and process modification. Our integrated methodology can be applied to other crops, health-based consumer scenarios (fresh versus processed) and geographies, thereby informing decision-making throughout supply chains. Employing such methods will be essential as food systems are forced to adapt and transform to become carbon neutral due to the imperatives of climate change.

10.
Data Brief ; 34: 106639, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33365369

ABSTRACT

This article elaborates on the life cycle assessment (LCA) protocol designed for formulating the life cycle inventories (LCIs) of fruit and vegetable (F&V) supply chains. As a set of case studies, it presents the LCI data of the processed vegetable products, (a) potato: chips, frozen-fries, and dehydrated flakes, and (b) tomato-pasta sauce. The data can support to undertake life cycle impact assessment (LCIA) of food commodities in a "cradle to grave" approach. An integrated F&V supply chain LCA model is constructed, which combined three components of the supply chain: farming system, post-harvest system (processing until the consumption) and bio-waste handling system. We have used numbers of crop models to calculate the crop yields, crop nutrient uptake, and irrigation water requirements, which are largely influenced by the local agro-climatic parameters of the selected crop reporting districts (CRDs) of the United States. For the farming system, LCI information, as shown in the data are averaged from the respective CRDs. LCI data for the post-harvest stages are based on available information from the relevant processing plants and the engineering estimates. The article also briefly presents the assumptions made for evaluating future crop production scenarios. Future scenarios integrate the impact of climate change on the future productivity and evaluate the effect of adaptation measures and technological advancement on the crop yield. The provided data are important to understand the characteristics of the food supply chain, and their relationships with the life cycle environmental impacts. The data can also support to formulate potential environmental mitigation and adaptation measures in the food supply chain mainly to cope with the adverse impact of climate change.

11.
Sci Total Environ ; 758: 143662, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33234271

ABSTRACT

This study discusses the environmental life cycle impacts of potato and tomato supply chains in a "cradle-to-grave" perspective. The principal focus is to evaluate the processed products, while fresh products are also briefly discussed. Processed products included are potato-chips, frozen fries and dehydrated flakes, and tomato-pasta sauce. The functional unit (FU) is 1 kg product(s), eaten at the consumer stage. Life cycle assessment (LCA) modeling has utilized multiple mechanistic crop models to estimate the crop yields, crop nutrient uptakes and irrigation water requirements. The farming systems represent the primary crop reporting districts where the selected crops are produced on a commercial scale in the United States. The post-harvest system was constructed utilizing the data collected from a processing plant and from other available studies. LCA modeling also constituted handling of co-products (e.g. starch in potatoes) and biowaste. A wide range of environmental impact categories were selected for the evaluation, which showed environmental differences between fresh and processed products. For instance, global warming potential for potato-fresh, chips, fries and dehydrated was 0.97, 0.85, 1.21 and 0.65 kg CO2-eq/FU respectively. For fresh tomato and tomato sauce, it was 0.74 and 1.5 kg CO2-eq/FU respectively. Likewise, fossil resource scarcity for fresh potatoes was higher than chips and dehydrated flakes, but lower than fries. Water consumption was slightly higher in fresh potatoes compared to the processed products. Similar impact patterns were found in fresh and processed tomato products. For most of the impact categories, processing and the agriculture systems were the major contributors. The contribution from the consumer stage varied with the ways the product is prepared, e.g. whether fries are oven heated or deep-fried in oil. Environmental mitigation measures include, the use of drip irrigation (for potatoes), and reducing: food miles, food waste and the use of secondary packaging materials.


Subject(s)
Refuse Disposal , Solanum lycopersicum , Solanum tuberosum , Environment , Food Handling
12.
Water Environ Res ; 93(4): 535-548, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32920945

ABSTRACT

In this work, we report experimental studies on the disinfection of irrigation water using a flow cell assembled with low-cost graphite plates as both anode and cathode. Natural irrigation waters collected from two irrigation locations (Reservoir 225 and Bott Well Pond) in Hawaii were used, and synthetic irrigation waters were prepared based on the chemical analysis of natural irrigation waters. The concentration of chloride was 10.2 mg/L in the synthetic Reservoir 225 water and 6.9 mg/L in the synthetic Bott Well pond water. Escherichia coli K12 ER2738 was selected as a model bacterium to evaluate the disinfection capability of the flow cell. Experiments performed in the synthetic irrigation waters showed that E. coli was inactivated by free chlorine species electro-generated from oxidation of chloride ions at the graphite anode. Complete removal of E. coli was achieved within 10 min in the synthetic irrigation waters. The disinfection of the natural irrigation waters took about four times longer than the disinfection of the synthetic irrigation waters. This result is most likely due to the presence of organic matter (and possibly other oxidizable species) in the natural irrigation waters. PRACTITIONER POINTS: Electrochemical flow cell disinfects to 99.9% with commercial graphite electrodes. E. coli is removed in 10 min from synthetic irrigation water by a flow cell. E. coli removal takes 4× longer in natural irrigation water. A minimum current density of ≥1 mA/cm2 is required for disinfection. The primary disinfection mechanism is through chlorine generated from chloride ions.


Subject(s)
Graphite , Water Purification , Disinfection , Electrodes , Escherichia coli , Water
13.
PLoS One ; 14(7): e0219199, 2019.
Article in English | MEDLINE | ID: mdl-31295286

ABSTRACT

Bacterial Panicle Blight (BPB), caused by Burkholderia glumae, is a bacterial disease in rice (Oryza sativa) that reduces rice yield and quality for producers and consequently creates higher market prices for consumers. BPB is caused by the simultaneous occurrence of high daily minimum temperatures (~22°C) and relative humidity (~77%), which may increase under the current scenario of global warming. This study hypothesized that the economic damage from warming may cause an increase in economic losses, though at a decreasing rate per degree. Thus, this study estimates the yield losses associated with BPB occurrences at the county level in the Mid-South United States (US) for annual rice production in 2003-2013 and under +1-3°C warming scenarios using daily weather information with appropriate thresholds. From the estimated losses, the total production potential of a BPB-resistant rice was quantified using a spatial equilibrium trade model to further estimate market welfare changes with the counterfactual scenario that all US county-level rice production were BPB resistant. Results from the study indicate that the alleviation of BPB would represent a $69 million USD increase in consumer surplus in the US and a concomitant increase in rice production that would feed an additional 1.46 million people annually assuming a global average consumption of 54 Kg per person. Under the 1°C warming scenario, BPB occurrences and production losses would cause price increases for rice and subsequently result in a $112 million USD annual decrease in consumer surplus in the US and a loss of production equivalent to feeding 2.17 million people. Under a 3°C warming scenario, production losses due to BPB cause an annual reduction of $204 million USD in consumer surplus in the US, and a loss in production sufficient to feed 3.98 million people a year. As global warming intensifies, BPB could become a more common and formidable rice disease to combat, and breeding for BPB resistance would be the primary line-of-defense as currently no effective chemical options are available. The results of this study inform agriculturalists, policymakers, and economists about the value of BPB-resistance in the international rice market and also help support efforts to focus future breeding toward climate change impact resilience.


Subject(s)
Burkholderia/pathogenicity , Global Warming , Oryza/microbiology , Plant Diseases/microbiology , Breeding , Burkholderia/growth & development , Climate Change , Hot Temperature , Oryza/growth & development , United States
14.
J Environ Manage ; 241: 293-304, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31009817

ABSTRACT

Livestock production is important for food security, nutrition, and landscape maintenance, but it is associated with several environmental impacts. To assess the risk and benefits arising from livestock production, transparent and robust indicators are required, such as those offered by life cycle assessment. A central question in such approaches is how environmental burden is allocated to livestock products and to manure that is re-used for agricultural production. To incentivize sustainable use of manure, it should be considered as a co-product as long as it is not disposed of, or wasted, or applied in excess of crop nutrient needs, in which case it should be treated as a waste. This paper proposes a theoretical approach to define nutrient requirements based on nutrient response curves to economic and physical optima and a pragmatic approach based on crop nutrient yield adjusted for nutrient losses to atmosphere and water. Allocation of environmental burden to manure and other livestock products is then based on the nutrient value from manure for crop production using the price of fertilizer nutrients. We illustrate and discuss the proposed method with two case studies.


Subject(s)
Fertilizers , Manure , Agriculture , Animals , Crop Production , Livestock
15.
J Anim Sci ; 97(4): 1865-1873, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30689888

ABSTRACT

Livestock production is increasingly subjected to environmental and economic challenges related to water quantities being utilized, expressed as green (evapotranspiration from rainwater), blue (surface and groundwater), or gray (waste) water footprints at each stage of the product life cycle. Published data indicated that the largest share of water being used for producing beef in the United States can be traced back to growing forage and feed (>90%), whereby the green water footprint was substantially greater (12,933 liters of water per kg of product) than the blue water footprint, as only a small amount of pasture- and cropland is irrigated (525 L/kg). Based on prevailing quantification methods, feed conversion ratios, and grazing land required, water footprints for beef produced through grazing alone can be relatively high. Green water footprints can easily reach more than 19,000 L/kg for beef from grazing compared with a maximum of 1,731 L/kg for chicken under a typical scenario. However, much of the existing grazing land cannot or should not be converted to cropland for various ecological reasons, and large water footprints would remain for the vegetation even if cattle were removed. Life cycle assessments (LCA) were historically developed to provide a framework for evaluation of the full life cycle of a product or service and to ultimately model environmental impacts through life cycle impact assessment methods. Life cycle assessments grew more refined during past years and efforts are being made to reflect the environmental and economic consequences of different livestock and crop production systems more accurately than in the past. Typical beef production systems on natural and naturalized grasslands in North America generate environmental, economic, and societal benefits that should be reflected in future LCA, farm policies, and regulations. To increase the water use efficiency of each segment of the beef supply chain and thereby to reduce water footprints, grazing systems and methods as well as external inputs should be further optimized and integrated toward enhanced ecosystem services, thereby lowering the overall environmental impact of livestock production.


Subject(s)
Animal Husbandry , Cattle/physiology , Conservation of Water Resources , Life Cycle Stages , Livestock/physiology , Water/metabolism , Animals , Environment , North America , United States
16.
Sci Total Environ ; 650(Pt 2): 2863-2879, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30373063

ABSTRACT

This study discusses importance of assessing environmental sustainability of fruits and vegetable (F&V) production sector in future climate change (CC) scenarios. For the current production scenario, life cycle environmental footprints of F&V supply chain are discussed considering the influences of: agro-climates, production systems, raw material inputs, post-harvest managements to the products' yield and quality. Potential risks of CC to the sector are discussed in the context of elevated global temperature and carbon dioxide level, ozone depletion and changes in precipitation patterns. Potential risks due to CC are on the productivity and the quality of F&V products, such as texture, color, maturity and nutrients. Increased risk of failure of the current crop protection strategies, e.g. due to pest infestations and different crop-water and nutrient stresses are among the short and long-term risks. It also discusses potential adaptation and mitigation measures to CC, and therefrom argues on the related environmental consequences in the supply chain. From the LCA studies, it was revealed that environmental impacts of F&V supply chain varied as per agro-ecological characteristics and farming systems, e.g. greenhouse vs open-field, organic vs conventional, and grown in different agro-climatic conditions. The nexus among the climatic stresses, potential adaptation and mitigation measures, hence were in the form of potential changes in the raw material inputs and resource flows depending on the preferred future agro-management strategies and farming practices. Adaptation and other management options, included are, changes in: crop calendar, nutrient and pest management strategies, post-harvest handling and improved preservation of F&V products. These are argued eventually being determining factors leading to different environmental footprints compared to the existing management scenarios. Prospective life cycle environmental evaluation of F&V supply chain considering the relationship among product yield and qualities, CC stresses and potential adaptation and mitigation measures is thus a new thrust and direction.


Subject(s)
Climate Change , Environment , Food Supply , Fruit/growth & development , Vegetables/growth & development , Agriculture
17.
J Anim Sci ; 97(1): 472-484, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30395291

ABSTRACT

Life cycle assessment of various alternative management strategies in the swine industry was performed to evaluate their impact on greenhouse gas (GHG) emissions, cumulative energy use, and cumulative water use. The management strategies included the use of immunocastration (IC), production without ractopamine (NoRAC), production without antimicrobials used for either growth promotion (NoAGP) or disease prevention (NoPREV), production of entire males (boars) (EM), and use of gestation pens (PENS). A common baseline scenario representing standard management practices in the swine industry was created against which all alternative management practices were compared pairwise. The study scope was from cradle-to-farm gate with a functional unit of 1 kg live weight at the farm gate. The baseline and each alternative management scenario was simulated in Pig Production Environmental Footprint Calculator (PPEC) model by varying key variables to populate life cycle inventory inputs for SimaPro V7.3 (Pre' Consultant, the Netherlands), a life cycle assessment modeling program. Increase in GHG emissions, energy use, and water use were observed for NoAGP (1.56, 1.75, and 1.03%, respectively), NoPREV (17.32, 18.40, and 15.58%, respectively), and NoRAC (6.52, 4.87, and 7.52%, respectively) scenarios. For EM scenario, GHG emissions and energy use increased by 2.09 and 3.75%, respectively but water use decreased by 2.29%. Lower GHG emissions, energy use, and water use were observed for PENS (0.97, 1.50, and 0.97%, respectively) and IC (2.39, 2.57, and 2.96%, respectively) scenarios. These changes in the impact categories were statistically significant (P < 0.05) for all scenarios except for changes to GHG emissions for EM and changes to water consumption for PENS and NoAGP. However, the uncertainty analysis showed that the tails of distribution for baseline and alternative management scenario pair overlapped. The impact of management practices on sustainability metrics resulted from differences in pig performance parameters, manure production, feed consumption, etc. between various management practices and the baseline scenario. Due to uncertainties in input parameters, the results should be interpreted as general trends which specifically highlight trade-offs that may result from shifts in production practices. The study identified some of the hot spots in pig production and can be useful in determining best management practices to make swine production more environmentally sustainable.


Subject(s)
Animal Husbandry/standards , Swine , Air Pollution/prevention & control , Animal Welfare , Animals , Conservation of Natural Resources/methods , Female , Greenhouse Effect , Male , Manure
19.
PLoS One ; 11(12): e0167295, 2016.
Article in English | MEDLINE | ID: mdl-27907101

ABSTRACT

Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production.


Subject(s)
Crop Production/economics , Environment , Magnaporthe , Oryza/microbiology , Plant Diseases/parasitology , Disease Outbreaks , Food Supply , United States
20.
Int J Phytoremediation ; 17(1-6): 182-90, 2015.
Article in English | MEDLINE | ID: mdl-25361231

ABSTRACT

Restoration of a weathered crude oil contaminated site undergoing phytoremediation was evaluated using nematodes as bioindicators. Samples were collected twice per year equating to spring and fall/winter. Mean annual total abundances ranged from 18-130 in the non-fertilized non-vegetated control (CTR) to 69-728 in tall fescue-ryegrass (FES) to 147-749 (100 g(-1)) in the fertilized bermudagrass-fescue (BER) treatment. Proportions of plant-parasitic (PP) and free-living (FL) nematodes were significantly impacted by treatment, but not year, with PP nematodes accounting for 27, 59, and 68% of CTR, FES, and BER communities, respectively. There was no significant year by season by treatment or treatment by year effect for total, PP, or FL nematode abundances. Diversity did not increase over time. The BER and FES treatments had more mature communities as indicated by higher plant-parasitic index (PPI) values. Phytoremediation accelerates petroleum degradation and alters the soil habitat which is reflected in the nematode community. However, low numbers and inconsistent presence of persister strategist omnivores and predators, and the lack in improvement over time in treatment effects for total and PP nematode abundances, PP and FL proportions, or PPI indicate the system is being rehabilitated but has not been restored after 69 months of phytoremediation.


Subject(s)
Cynodon/metabolism , Environmental Restoration and Remediation/methods , Festuca/metabolism , Lolium/metabolism , Nematoda/growth & development , Petroleum/metabolism , Soil Pollutants/metabolism , Animals , Biodegradation, Environmental , Ecosystem , Plant Roots/metabolism , Soil/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...