Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 175(6): 753-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20384493

ABSTRACT

The domestic dog has undergone extensive artificial selection resulting in an extreme diversity in body size, personality, life-history, and metabolic traits among breeds. Here we tested whether proactive personalities (high levels of activity, boldness, and aggression) are related to a fast "pace of life" (high rates of growth, mortality, and energy expenditure). Data from the literature provide preliminary evidence that artificial selection on dogs (through domestication) generated variations in personality traits that are correlated with life histories and metabolism. We found that obedient (or docile, shy) breeds live longer than disobedient (or bold) ones and that aggressive breeds have higher energy needs than unaggressive ones. These correlations could result from either human preference for particular trait combinations or, more likely, correlated responses to artificial selection on personality. Our results suggest the existence of a general pace-of-life syndrome arising from the coevolution of personality, metabolic, and life-history traits.


Subject(s)
Behavior, Animal , Dogs/physiology , Energy Metabolism , Longevity , Selection, Genetic , Animals , Breeding , Dogs/psychology , Humans
2.
Oecologia ; 162(2): 303-12, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19771453

ABSTRACT

The energy and nutrient demands of parasites on their hosts are frequently invoked as an explanation for negative impacts of parasitism on host survival and reproductive success. Although cuterebrid bot flies are among the physically largest and most-studied insect parasites of mammals, the only study conducted on metabolic consequences of bot fly parasitism revealed a surprisingly small effect of bot flies on host metabolism. Here we test the prediction that bot fly parasitism increases the resting metabolic rate (RMR) of free-ranging eastern chipmunks (Tamias striatus), particularly in juveniles who have not previously encountered parasites and have to allocate energy to growth. We found no effect of bot fly parasitism on adults. In juveniles, however, we found that RMR strongly increased with the number of bot fly larvae hosted. For a subset of 12 juveniles during a year where parasite prevalence was particularly high, we also compared the RMR before versus during the peak of bot fly prevalence, allowing each individual to act as its own control. Each bot fly larva resulted in a approximately 7.6% increase in the RMR of its host while reducing juvenile growth rates. Finally, bot fly parasitism at the juvenile stage was positively correlated with adult stage RMR, suggesting persistent effects of bot flies on RMR. This study is the first to show an important effect of bot fly parasitism on the metabolism and growth of a wild mammal. Our work highlights the importance of studying cost of parasitism over multiple years in natural settings, as negative effects on hosts are more likely to emerge in periods of high energetic demand (e.g. growing juveniles) and/or in harsh environmental conditions (e.g. low food availability).


Subject(s)
Basal Metabolism , Diptera/physiology , Host-Parasite Interactions , Sciuridae/parasitology , Animals , Body Size , Female , Larva/physiology , Male , Parasitic Diseases, Animal/metabolism , Sciuridae/anatomy & histology , Sciuridae/metabolism , Seasons
3.
Gen Comp Endocrinol ; 140(1): 52-60, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15596071

ABSTRACT

Analyses of the development of the reproductive system in seasonally breeding birds in the framework of long-term ecological studies are rare. Here, we present the first results of such a study in two Corsican populations of a European passerine bird, the blue tit (Parus caeruleus). The two study populations occupy different oak habitats and are separated by only 25 km. Despite their close proximity, they show a one-month difference in onset of egg laying, even after controlling for altitude. This micro-geographic difference in breeding date appears adaptive because both study populations raise chicks when food is most plentiful. In our study, males reached their maximum song activity during the egg-laying stage while maximal testosterone levels and testes sizes were reached 2-3 weeks before egg laying. The rate of development of the reproductive system in males was much faster in the earlier population, in spite of a similar onset of gonad development and song activity for the two study populations. No change in the volume of the song-control nuclei (HVC and RA) could be detected during the study period. Development of brain nuclei was completed 2-3 months before the beginning of intense sexual activity.


Subject(s)
Reproduction/physiology , Songbirds/physiology , Testosterone/pharmacology , Vocalization, Animal , Animals , Brain/growth & development , Environment , Female , France , Male , Ovary/growth & development , Seasons , Testis/growth & development , Testosterone/blood , Time Factors
4.
Oecologia ; 141(4): 555-61, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15549399

ABSTRACT

Vertebrate studies have rarely investigated the influence of spatial variation in habitat richness on both short-term (breeding) and long-term (offspring recruitment) reproductive performance using simultaneously multi-patch, multi-habitat type and multi-year approaches at landscape level. Here we present results of such an approach using the influence of two oak tree (Quercus ilex, Q. humilis) species on reproductive performance in Corsican blue tits (Parus caeruleus ogliastrae) as a model system. We found that blue tits breeding in rich broad-leaved deciduous patches consistently laid eggs earlier in the season, and produced larger clutches and more fledglings of higher quality, than those breeding in poor evergreen patches. Also, parents, especially males, were in better physical condition in the broad-leaved deciduous than in the evergreen patches. Surprisingly, estimates of long-term effects of reproduction, such as recruitment rates of locally born offspring, did not differ between the two habitat types. Our results suggest that short-term breeding performance and phenotypic quality of both chicks and parents do not necessarily provide reliable information about contributions to following generations at a scale larger than that of the local study plot. Differences in reproductive performance between the two oak habitat types could not be attributed to density-dependent effects, differences in levels of nest predation, or differences in age structure of the birds. We suggest that habitats that are optimal for breeding are not necessarily optimal for survival after the breeding season.


Subject(s)
Environment , Passeriformes/physiology , Phenotype , Reproduction/physiology , Trees , Animals , Body Constitution/physiology , Body Weights and Measures , France , Population Dynamics , Quercus/physiology
5.
Zoology (Jena) ; 107(1): 29-48, 2004.
Article in English | MEDLINE | ID: mdl-16351926

ABSTRACT

Heterothermic mammals increase the proportion of polyunsaturated fatty acids (PUFA) in their body fats prior to entering torpor. Because PUFA have low melting points, it is thought that they play an important role in maintaining the fluidity of depot fats and membrane phospholipids at low body temperatures. However, PUFA are more prone to autoxidation when exposed to reactive oxygen species (ROS) during torpor and during the periodic arousals that characterize hibernation. A lack of PUFA or an excess of PUFA may constrain the use of torpor by heterothermic mammals. We performed a mixed model meta-analysis of 17 controlled-feeding studies to test the effect of dietary PUFA on the depth and expression of torpor by daily heterotherms and hibernators. We also reviewed the literature on the PUFA content of the diet and depot fats of heterothermic mammals to address two principal topics: (1) Do low dietary levels of PUFA reduce the expression of torpor under laboratory conditions and, if so, are free-ranging animals constrained by a lack of PUFA? (2) Do high dietary levels of PUFA result in a reduction in the use, depth, and duration of torpor and, if so, do free-ranging animals seek to optimize rather than maximize PUFA intake? Low-PUFA diets consistently increase the lower setpoint for body temperature and minimum metabolic rate for both hibernators and daily heterotherms. Above the lower setpoint, low-PUFA diets usually increase body temperature and metabolic rate and decrease the duration of torpor bouts and this effect is similar for hibernators and daily heterotherms. Free-ranging rodent hibernators have dietary PUFA intakes that are far higher than those of the low-PUFA diets offered in controlled-feeding experiments, so these hibernators may never experience the constraints associated with a lack of PUFA. Diets of free-ranging insectivorous bats and echidnas have PUFA levels that are less than half as high as those offered in experimental low-PUFA diets, yet they exhibit deep and extended bouts of torpor. We argue that alternate mechanisms exist for maintaining the fluidity of body fats and that high-PUFA intake may not be a prerequisite for deep and extended bouts of torpor. Four studies indicate that animals that were fed high-PUFA diets are reluctant to enter torpor and show shallower and shorter torpor bouts. Although authors attribute this response to autoxidation, these animals did not have a higher PUFA content in their depot fats than animals where PUFA was shown to enhance torpor. We suggest that these contradictory results indicate inter-specific or inter-individual variation in the ability to control ROS and limit autoxidation of PUFA. High dietary levels of PUFA will constrain the expression of torpor only when the oxidative challenge exceeds the capacity of the antioxidant defence system. Studies of diet selection indicate that insectivorous species with low dietary PUFA levels seek to maximize PUFA intake. However, herbivorous species that have access to plants and plant parts of high-PUFA content do not appear to maximize PUFA intake. These data suggest that animals attempt to optimize rather than maximize PUFA intake. The effect of PUFA should be viewed in the light of a cost-benefit trade-off, where the benefit of high-PUFA intake is an easier access to low body temperatures and the cost is increased risk of autoxidation.

6.
Physiol Biochem Zool ; 76(2): 165-79, 2003.
Article in English | MEDLINE | ID: mdl-12794670

ABSTRACT

Hibernation is widely regarded as an adaptation to seasonal energy shortage, but the actual influence of energy availability on hibernation patterns is rarely considered. Here we review literature on the costs and benefits of torpor expression to examine the influence that energy may have on hibernation patterns. We first establish that the dichotomy between food- and fat-storing hibernators coincides with differences in diet rather than body size and show that small or large species pursuing either strategy have considerable potential scope in the amount of torpor needed to survive winter. Torpor expression provides substantial energy savings, which increase the chance of surviving a period of food shortage and emerging with residual energy for early spring reproduction. However, all hibernating mammals periodically arouse to normal body temperatures during hibernation. The function of these arousals has long been speculated to involve recovery from physiological costs accumulated during metabolic depression, and recent physiological studies indicate these costs may include oxidative stress, reduced immunocompetence, and perhaps neuronal tissue damage. Using an optimality approach, we suggest that trade-offs between the benefits of energy conservation and the physiological costs of metabolic depression can explain both why hibernators periodically arouse from torpor and why they should use available energy to minimize the depth and duration of their torpor bouts. On the basis of these trade-offs, we derive a series of testable predictions concerning the relationship between energy availability and torpor expression. We conclude by reviewing the empirical support for these predictions and suggesting new avenues for research on the role of energy availability in mammalian hibernation.


Subject(s)
Basal Metabolism/physiology , Body Temperature/physiology , Energy Metabolism/physiology , Hibernation/physiology , Mammals/physiology , Adipose Tissue/metabolism , Animal Nutritional Physiological Phenomena , Animals , Models, Biological , Thermogenesis/physiology
7.
Physiol Biochem Zool ; 76(2): 180-6, 2003.
Article in English | MEDLINE | ID: mdl-12794671

ABSTRACT

Reduced torpor expression by hibernating mammals is often attributed to physiological constraints that limit their hibernation ability but may instead reflect adaptive, plastic responses to surplus energy availability. We evaluated this hypothesis by supplementing the food hoards of free-ranging eastern chipmunks (Tamias striatus) before hibernation and then documenting their use of torpor during the subsequent winter. In both years of study, chipmunks that received additional food were euthermic more than twice as frequently as nonsupplemented individuals. Furthermore, when food-supplemented individuals did express torpor, their minimum collar temperature was 5 degrees -10 degrees C warmer than nonsupplemented animals. These results indicate that reduced torpor expression by hibernators can result from an absence of energetic necessity rather than a lack of physiological capability and suggest that even endotherms sequestered in a hibernaculum may benefit from maintaining an elevated body temperature whenever possible.


Subject(s)
Energy Metabolism/physiology , Hibernation/physiology , Sciuridae/physiology , Animals , Body Temperature/physiology , Food Deprivation/physiology , Telemetry
8.
Nature ; 418(6895): 313-6, 2002 Jul 18.
Article in English | MEDLINE | ID: mdl-12124621

ABSTRACT

To predict the consequences of human-induced global climate change, we need to understand how climate is linked to biogeography. Energetic constraints are commonly invoked to explain animal distributions, and physiological parameters are known to vary along distributional gradients. But the causal nature of the links between climate and animal biogeography remain largely obscure. Here we develop a bioenergetic model that predicts the feasibility of mammalian hibernation under different climatic conditions. As an example, we use the well-quantified hibernation energetics of the little brown bat (Myotis lucifugus) to parameterize the model. Our model predicts pronounced effects of ambient temperature on total winter energy requirements, and a relatively narrow combination of hibernaculum temperatures and winter lengths permitting successful hibernation. Microhabitat and northern distribution limits of M. lucifugus are consistent with model predictions, suggesting that the thermal dependence of hibernation energetics constrains the biogeography of this species. Integrating projections of climate change into our model predicts a pronounced northward range expansion of hibernating bats within the next 80 years. Bioenergetics can provide the simple link between climate and biogeography needed to predict the consequences of climate change.


Subject(s)
Animal Migration , Chiroptera/physiology , Climate , Energy Metabolism , Hibernation/physiology , Animals , Geography , Greenhouse Effect , North America , Population Dynamics , Seasons , Temperature
9.
Oecologia ; 133(1): 30-37, 2002 Sep.
Article in English | MEDLINE | ID: mdl-24599366

ABSTRACT

The timing and basis of the transition from energy reserve accumulation to reserve utilization in autumn may be a key determinant of winter survival in endotherms, but has rarely been examined directly in the field. In the present study we quantify the energetics of autumn mast hoarding in eastern chipmunks (Tamias striatus) to document the degree to which larder hoarding permits capitalizing on brief pulses of resource abundance and to evaluate the basis of the decision to stop hoarding and initiate hibernation. Daily energy expenditure, measured with the doubly labeled water technique, increased significantly with date and decreasing ambient temperature, eventually exceeding 3× resting metabolic rate in late autumn. Simultaneous documentation of food delivery to burrow larder hoards revealed that delivery rates were low in early autumn, extremely high for a brief period in mid-autumn, then low again in late autumn. Combining estimates of energy expenditure, consumption, and delivery yielded net energy surpluses of 1,320-4,600 kJ day(-1) during the peak hoarding period, meaning total hibernation energy requirements could be acquired in 1-2 days. These results, together with measures of food availability and ambient temperature, suggest that chipmunk activity in late autumn may be affected by both the extent of hoard accumulation and thermoregulatory constraints on sustained energy expenditure. We speculate that both state-dependency and energetic ceilings on autumn hoarding behavior may enhance the capacity of the mast seeding strategy of trees to effectively swamp the foraging efforts of larder-hoarding granivores.

SELECTION OF CITATIONS
SEARCH DETAIL