Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 11: 710, 2020.
Article in English | MEDLINE | ID: mdl-32754198

ABSTRACT

Cattle breeding routinely uses crossbreeding between subspecies (Bos taurus taurus and Bos taurus indicus) to form composite breeds, such as Brangus. These composite breeds provide an opportunity to identify recent selection signatures formed in the new population and evaluate the genomic composition of these regions of the genome. Using high-density genotyping, we first identified runs of homozygosity (ROH) and calculated genomic inbreeding. Then, we evaluated the genomic composition of the regions identified as selected (selective sweeps) using a chromosome painting approach. The genomic inbreeding increased at approximately 1% per generation after composite breed formation, showing the need of inbreeding control even in composite breeds. Three selected regions in Brangus were also identified as Angus selection signatures. Two regions (chromosomes 14 and 21) were identified as signatures of selection in Brangus and both founder breeds. Five of the 10 homozygous regions in Brangus were predominantly Angus in origin (probability >80%), and the other five regions had a mixed origin but always with Brahman contributing less than 50%. Therefore, genetic events, such as drift, selection, and complementarity, are likely shaping the genetic composition of founder breeds in specific genomic regions. Such findings highlight a variety of opportunities to better control the selection process and explore heterosis and complementarity at the genomic level in composite breeds.

2.
Front Genet ; 9: 87, 2018.
Article in English | MEDLINE | ID: mdl-29616079

ABSTRACT

The liver plays a central role in metabolism and produces important hormones. Hepatic estrogen receptors and the release of insulin-like growth factor 1 (IGF1) are critical links between liver function and the reproductive system. However, the role of liver in pubertal development is not fully understood. To explore this question, we applied transcriptomic analyses to liver samples of pre- and post-pubertal Brahman heifers and identified differentially expressed (DE) genes and genes encoding transcription factors (TFs). Differential expression of genes suggests potential biological mechanisms and pathways linking liver function to puberty. The analyses identified 452 DE genes and 82 TF with significant contribution to differential gene expression by using a regulatory impact factor metric. Brain-derived neurotrophic factor was observed as the most down-regulated gene (P = 0.003) in post-pubertal heifers and we propose this gene influences pubertal development in Brahman heifers. Additionally, co-expression network analysis provided evidence for three TF as key regulators of liver function during pubertal development: the signal transducer and activator of transcription 6, PBX homeobox 2, and polybromo 1. Pathway enrichment analysis identified transforming growth factor-beta and Wnt signaling pathways as significant annotation terms for the list of DE genes and TF in the co-expression network. Molecular information regarding genes and pathways described in this work are important to further our understanding of puberty onset in Brahman heifers.

3.
Transl Anim Sci ; 2(1): 81-88, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32704691

ABSTRACT

Over the last 20 yr, global positioning system (GPS) collars have greatly enhanced livestock grazing behavior research. Practices designed to improve livestock grazing distribution can now be accurately and cost effectively monitored with GPS tracking. For example, cattle use of feed supplement placed in areas far from water and on steep slopes can be measured with GPS tracking and corresponding impacts on distribution patterns estimated. Ongoing research has identified genetic markers that are associated with cattle spatial movement patterns. If the results can be validated, genetic selection for grazing distribution may become feasible. Tracking collars have become easier to develop and construct, making them significantly less expensive, which will likely increase their use in livestock grazing management research. Some research questions can be designed so that dependent variables are measured by spatial movements of livestock, and in such cases, GPS tracking is a practical tool for conducting studies on extensive and rugged rangeland pastures. Similarly, accelerometers are changing our ability to monitor livestock behavior. Today, accelerometers are sensitive and can record movements at fine temporal scales for periods of weeks to months. The combination of GPS tracking and accelerometers appears to be useful tools for identifying changes in livestock behavior that are associated with livestock diseases and other welfare concerns. Recent technological advancements may make real-time or near real-time tracking on rangelands feasible and cost-effective. This would allow development of applications that could remotely monitor livestock well-being on extensive rangeland and notify ranchers when animals require treatment or other management.

SELECTION OF CITATIONS
SEARCH DETAIL
...