Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; : e16310, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600732

ABSTRACT

PREMISE: The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole-genome triplication with closely related salt-sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. METHODS: Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. RESULTS: Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. CONCLUSIONS: These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.

2.
Appl Plant Sci ; 11(6): e11541, 2023.
Article in English | MEDLINE | ID: mdl-38106535

ABSTRACT

Premise: Higher temperatures across the globe are causing an increase in the frequency and severity of droughts. In agricultural crops, this results in reduced yields, financial losses, and increased food costs at the supermarket. Root growth maintenance in drying soils plays a major role in a plant's ability to survive and perform under drought, but phenotyping root growth is extremely difficult due to roots being under the soil. Methods and Results: RootBot is an automated high-throughput phenotyping robot that eliminates many of the difficulties and reduces the time required for performing drought-stress studies on primary roots. RootBot simulates root growth conditions using transparent plates to create a gap that is filled with soil and polyethylene glycol (PEG) to simulate low soil moisture. RootBot has a gantry system with vertical slots to hold the transparent plates, which theoretically allows for evaluating more than 50 plates at a time. Software pipelines were also co-opted, developed, tested, and extensively refined for running the RootBot imaging process, storing and organizing the images, and analyzing and extracting data. Conclusions: The RootBot platform and the lessons learned from its design and testing represent a valuable resource for better understanding drought tolerance mechanisms in roots, as well as for identifying breeding and genetic engineering targets for crop plants.

3.
Plant Cell ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37824826

ABSTRACT

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

4.
Mol Ecol ; 32(2): 275-277, 2023 01.
Article in English | MEDLINE | ID: mdl-36435982

ABSTRACT

Whole-genome duplication (WGD) is an important force in plant diversification and novel environment adaptation. Various hypotheses have been proposed on the mechanism of how WGD influences this evolutionary process from chromosome recombination to genetic diversity (Qi et al., 2021). In this issue of Molecular Ecology, Xu et al. (2022) conduct a comparative transcriptome study across species to investigate the effects of WGD on plant adaptation and the differentiation of paralogues within two distantly related mangrove species (Xu et al., 2021). They identify retained WGD-derived duplicate pairs, assess their contributions to the salt tolerance phenotype, and propose a model for adaptation expansion in mangroves through the neofunctionalization of WGD-derived duplicate genes. Their results show that neofunctionalized copies of known salt tolerance-related genes show upregulated expression in fluctuating salinity (i.e., fresh and hypersaline) compared to the optimal medium salinity environment. This suggests that after WGD, retained duplicates increase genomic plasticity allowing for adaptation to new and unstable environments.


Subject(s)
Gene Duplication , Salt Tolerance , Salt Tolerance/genetics , Genome , Genomics , Transcriptome , Plants/genetics , Evolution, Molecular , Genome, Plant/genetics
5.
Appl Plant Sci ; 9(7)2021 Jul.
Article in English | MEDLINE | ID: mdl-34336398

ABSTRACT

PREMISE: Researchers adopting target-enrichment approaches often struggle with the decision of whether to use universal or lineage-specific probe sets. To circumvent this quandary, we investigate the efficacy of a simultaneous enrichment by combining universal probes and lineage-specific probes in a single hybridization reaction, to benefit from the qualities of both probe sets with little added cost or effort. METHODS AND RESULTS: Using 26 Brassicaceae libraries and standard enrichment protocols, we compare results from three independent data sets. A large average fraction of reads mapping to the Angiosperms353 (24-31%) and Brassicaceae (35-59%) targets resulted in a sizable reconstruction of loci for each target set (x̄ ≥ 70%). CONCLUSIONS: High levels of enrichment and locus reconstruction for the two target sets demonstrate that the sampling of genomic regions can be easily extended through the combination of probe sets in single enrichment reactions. We hope that these findings will facilitate the production of expanded data sets that answer individual research questions and simultaneously allow wider applications by the research community as a whole.

6.
Appl Plant Sci ; 9(7): e11416, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34336404

ABSTRACT

PREMISE: Understanding relationships among orchid species and populations is of critical importance for orchid conservation. Target sequence capture has become a standard method for extracting hundreds of orthologous loci for phylogenomics. Up-front cost and time associated with design of bait sets makes this method prohibitively expensive for many researchers. Therefore, we designed a target capture kit to reliably sequence hundreds of orthologous loci across orchid lineages. METHODS: We designed an Orchidaceae target capture bait set for 963 single-copy genes identified in published orchid genome sequences. The bait set was tested on 28 orchid species, with representatives of the subfamilies Cypripedioideae, Orchidoideae, and Epidendroideae. RESULTS: Between 1,518,041 and 87,946,590 paired-end 150-base reads were generated for target-enriched genomic libraries. We assembled an average of 812 genes per library for Epidendroideae species and a mean of 501 genes for species in the subfamilies Orchidoideae and Cypripedioideae. Furthermore, libraries had on average 107 of the 254 genes that are included in the Angiosperms353 bait set, allowing for direct comparison of studies using either bait set. DISCUSSION: The Orchidaceae963 kit will enable greater accessibility and utility of next-generation sequencing for orchid systematics, population genetics, and identification in the illegal orchid trade.

7.
Am J Bot ; 108(7): 1112-1121, 2021 07.
Article in English | MEDLINE | ID: mdl-34263456

ABSTRACT

PREMISE: Cornales is an order of flowering plants containing ecologically and horticulturally important families, including Cornaceae (dogwoods) and Hydrangeaceae (hydrangeas), among others. While many relationships in Cornales are strongly supported by previous studies, some uncertainty remains with regards to the placement of Hydrostachyaceae and to relationships among families in Cornales and within Cornaceae. Here we analyzed hundreds of nuclear loci to test published phylogenetic hypotheses and estimated a robust species tree for Cornales. METHODS: Using the Angiosperms353 probe set and existing data sets, we generated phylogenomic data for 158 samples, representing all families in the Cornales, with intensive sampling in the Cornaceae. RESULTS: We curated an average of 312 genes per sample, constructed maximum likelihood gene trees, and inferred a species tree using the summary approach implemented in ASTRAL-III, a method statistically consistent with the multispecies coalescent model. CONCLUSIONS: The species tree we constructed generally shows high support values and a high degree of concordance among individual nuclear gene trees. Relationships among families are largely congruent with previous molecular studies, except for the placement of the nyssoids and the Grubbiaceae-Curtisiaceae clades. Furthermore, we were able to place Hydrostachyaceae within Cornales, and within Cornaceae, the monophyly of known morphogroups was well supported. However, patterns of gene tree discordance suggest potential ancient reticulation, gene flow, and/or ILS in the Hydrostachyaceae lineage and the early diversification of Cornus. Our findings reveal new insights into the diversification process across Cornales and demonstrate the utility of the Angiosperms353 probe set.


Subject(s)
Cornaceae , Magnoliopsida , Magnoliopsida/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...