Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
EMBO J ; 42(6): e112863, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36807601

ABSTRACT

The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.


Subject(s)
Drosophila Proteins , Hippo Signaling Pathway , Animals , Humans , Signal Transduction/physiology , Tumor Suppressor Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Neurofibromin 2/metabolism , Drosophila melanogaster/metabolism , Mammals , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
2.
FEBS J ; 289(3): 596-613, 2022 02.
Article in English | MEDLINE | ID: mdl-33565714

ABSTRACT

The Par-3/Baz family of polarity determinants is highly conserved across metazoans and includes C. elegans PAR-3, Drosophila Bazooka (Baz), human Par-3 (PARD3), and human Par-3-like (PARD3B). The C. elegans PAR-3 protein localises to the anterior pole of asymmetrically dividing zygotes with cell division cycle 42 (CDC42), atypical protein kinase C (aPKC), and PAR-6. The same C. elegans 'PAR complex' can also localise in an apical ring in epithelial cells. Drosophila Baz localises to the apical pole of asymmetrically dividing neuroblasts with Cdc42-aPKC-Par6, while in epithelial cells localises both in an apical ring with Cdc42-aPKC-Par6 and with E-cadherin at adherens junctions. These apical and junctional localisations have become separated in human PARD3, which is strictly apical in many epithelia, and human PARD3B, which is strictly junctional in many epithelia. We discuss the molecular basis for this fundamental difference in localisation, as well as the possible functions of Par-3/Baz family proteins as oligomeric clustering agents at the apical domain or at adherens junctions in epithelial stem cells. The evolution of Par-3 family proteins into distinct apical PARD3 and junctional PARD3B orthologs coincides with the emergence of stratified squamous epithelia in vertebrates, where PARD3B, but not PARD3, is strongly expressed in basal layer stem cells - which lack a typical apical domain. We speculate that PARD3B may contribute to clustering of E-cadherin, signalling from adherens junctions via Src family kinases or mitotic spindle orientation by adherens junctions in response to mechanical forces.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Drosophila Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Caenorhabditis elegans/genetics , Cell Adhesion/genetics , Cell Polarity/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , Humans
3.
Cells Dev ; 168: 203719, 2021 12.
Article in English | MEDLINE | ID: mdl-34242843

ABSTRACT

Adherens junctions are a defining feature of all epithelial cells, providing cell-cell adhesion and contractile ring formation that is essential for cell and tissue morphology. In Drosophila, adherens junctions are concentrated between the apical and basolateral plasma membrane domains, defined by aPKC-Par6-Baz and Lgl/Dlg/Scrib, respectively. Whether adherens junctions contribute to apical-basal polarization itself has been unclear because neuroblasts exhibit apical-basal polarization of aPKC-Par6-Baz and Lgl in the absence of adherens junctions. Here we show that, upon disruption of adherens junctions in epithelial cells, apical polarity determinants such as aPKC can still segregate from basolateral Lgl, but lose their sharp boundaries and also overlap with Dlg and Scrib - similar to neuroblasts. In addition, control of apical versus basolateral domain size is lost, along with control of cell shape, in the absence of adherens junctions. Manipulating the levels of apical Par3/Baz or basolateral Lgl polarity determinants in experiments and in computer simulations confirms that adherens junctions provide a 'picket fence' diffusion barrier that restricts the spread of polarity determinants along the membrane to enable precise domain size control. Movement of adherens junctions in response to mechanical forces during morphogenetic change thus enables spontaneous adjustment of apical versus basolateral domain size as an emergent property of the polarising system.


Subject(s)
Adherens Junctions , Drosophila Proteins , Adherens Junctions/metabolism , Animals , Cell Polarity/physiology , Drosophila/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Epithelial Cells
4.
Nat Commun ; 12(1): 3464, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103493

ABSTRACT

Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFß signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFß-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFß-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.


Subject(s)
Carcinogenesis/metabolism , Colonic Neoplasms/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Animals , Carcinogenesis/pathology , Cell Differentiation , Cell Survival , Colon/pathology , Colonic Neoplasms/genetics , Epithelial Cells/metabolism , Fetus/pathology , Inflammation/pathology , Kaplan-Meier Estimate , MAP Kinase Signaling System , Mice, Inbred C57BL , Mutation , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , YAP-Signaling Proteins
5.
EMBO J ; 40(13): e105770, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33950519

ABSTRACT

Wnt signalling induces a gradient of stem/progenitor cell proliferation along the crypt-villus axis of the intestine, which becomes expanded during intestinal regeneration or tumour formation. The YAP transcriptional co-activator is known to be required for intestinal regeneration, but its mode of regulation remains controversial. Here we show that the YAP-TEAD transcription factor is a key downstream effector of Wnt signalling in the intestine. Loss of YAP activity by Yap/Taz conditional knockout results in sensitivity of crypt stem cells to apoptosis and reduced cell proliferation during regeneration. Gain of YAP activity by Lats1/2 conditional knockout is sufficient to drive a crypt hyperproliferation response. In particular, Wnt signalling acts transcriptionally to induce YAP and TEAD1/2/4 expression. YAP normally localises to the nucleus only in crypt base stem cells, but becomes nuclear in most intestinal epithelial cells during intestinal regeneration after irradiation, or during organoid growth, in a Src family kinase-dependent manner. YAP-driven crypt expansion during regeneration involves an elongation and flattening of the Wnt signalling gradient. Thus, Wnt and Src-YAP signals cooperate to drive intestinal regeneration.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Intestines/physiology , Regeneration/genetics , Regeneration/physiology , Transcription Factors/genetics , Wnt Signaling Pathway/genetics , src-Family Kinases/genetics , Animals , Apoptosis/genetics , Cell Cycle Proteins/genetics , Cell Proliferation/genetics , Epithelial Cells/physiology , Intestinal Mucosa/physiology , Mice , Mice, Inbred C57BL , Stem Cells/physiology , YAP-Signaling Proteins
6.
Curr Opin Insect Sci ; 43: 1-10, 2021 02.
Article in English | MEDLINE | ID: mdl-32898719

ABSTRACT

Metamorphosis (Greek for a state of transcending-form or change-in-shape) refers to a dramatic transformation of an animal's body structure that occurs after development of the embryo or larva in many species. The development of a fly (or butterfly) from a crawling larva (or caterpillar) that forms a pupa (or chrysalis) before eclosing as a flying adult is a classic example of metamorphosis that captures the imagination and has been immortalized in children's books. Powerful genetic experiments in the fruit fly Drosophila melanogaster have revealed how genes can instruct the behaviour of individual cells to control patterns of tissue growth, mechanical force, cell-cell adhesion and cell-matrix adhesion drive morphogenetic change in epithelial tissues. Together, the distribution of mass, force and resistance determines cell shape changes, cell-cell rearrangements, and/or the orientation of cell divisions to generate the final form of the tissue. In organising tissue shape, genes harness the power of self-organisation to determine the collective behaviour of molecules and cells, which can often be reproduced in computer simulations of cell polarity and/or tissue mechanics. This review highlights fundamental discoveries in epithelial morphogenesis made by pioneers who were fascinated by metamorphosis, including D'Arcy Thompson, Conrad Waddington, Dianne Fristrom and Antonio Garcia-Bellido.


Subject(s)
Insecta/growth & development , Insecta/genetics , Metamorphosis, Biological/genetics , Animals , Epithelial Cells , Epithelium/enzymology , Metamorphosis, Biological/physiology , Morphogenesis
7.
Bioessays ; 42(5): e1900162, 2020 05.
Article in English | MEDLINE | ID: mdl-32128850

ABSTRACT

The transcriptional co-activators YAP (or YAP1) and TAZ (or WWTR1) are frequently activated during the growth and progression of many solid tumors, including lung, colorectal, breast, pancreatic, and liver carcinomas as well as melanoma and glioma. YAP/TAZ bind to TEAD-family co-activators to drive cancer cell survival, proliferation, invasive migration, and metastasis. YAP/TAZ activation may also confer resistance to chemotherapy, radiotherapy, or immunotherapy. YAP-TEAD cooperates with the RAS-induced AP-1 (FOS/JUN) transcription factor to drive tumor growth and cooperates with MRTF-SRF to promote activation of cancer-associated fibroblasts, matrix stiffening, and metastasis. The key upstream repressor of YAP/TAZ activation is the Hippo (MST1/2-LATS1/2) pathway and the key upstream activators are mechanically induced Integrin-SRC and E-cadherin-AJUBA/TRIP6/LIMD1, growth factor induced PI3K-AKT, and inflammation-induced G-protein coupled receptor (GPCR) signals, all of which antagonize the Hippo pathway. In this review, strategies to target YAP/TAZ activity in cancer are discussed along with the prospects for synergy with established pillars of cancer therapy.


Subject(s)
Melanoma , Phosphatidylinositol 3-Kinases , Adaptor Proteins, Signal Transducing/genetics , Humans , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , Transcription Factors/metabolism
8.
Development ; 147(5)2020 03 02.
Article in English | MEDLINE | ID: mdl-32122911

ABSTRACT

Mutations in the Ultrabithorax (Ubx) gene cause homeotic transformation of the normally two-winged Drosophila into a four-winged mutant fly. Ubx encodes a HOX family transcription factor that specifies segment identity, including transformation of the second set of wings into rudimentary halteres. Ubx is known to control the expression of many genes that regulate tissue growth and patterning, but how it regulates tissue morphogenesis to reshape the wing into a haltere is still unclear. Here, we show that Ubx acts by repressing the expression of two genes in the haltere, Stubble and Notopleural, both of which encode transmembrane proteases that remodel the apical extracellular matrix to promote wing morphogenesis. In addition, Ubx induces expression of the Tissue inhibitor of metalloproteases in the haltere, which prevents the basal extracellular matrix remodelling necessary for wing morphogenesis. Our results provide a long-awaited explanation for how Ubx controls morphogenetic transformation.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Homeodomain Proteins/genetics , Morphogenesis/genetics , Transcription Factors/genetics , Wings, Animal/embryology , Animals , CRISPR-Cas Systems , Drosophila melanogaster/genetics , Matrix Metalloproteinase Inhibitors/metabolism , Membrane Proteins/genetics , Serine Endopeptidases/genetics
9.
EMBO Rep ; 21(4): e49700, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32030856

ABSTRACT

Epithelial cells undergo cortical rounding at the onset of mitosis to enable spindle orientation in the plane of the epithelium. In cuboidal epithelia in culture, the adherens junction protein E-cadherin recruits Pins/LGN/GPSM2 and Mud/NuMA to orient the mitotic spindle. In the pseudostratified columnar epithelial cells of Drosophila, septate junctions recruit Mud/NuMA to orient the spindle, while Pins/LGN/GPSM2 is surprisingly dispensable. We show that these pseudostratified epithelial cells downregulate E-cadherin as they round up for mitosis. Preventing cortical rounding by inhibiting Rho-kinase-mediated actomyosin contractility blocks downregulation of E-cadherin during mitosis. Mitotic activation of Rho-kinase depends on the RhoGEF ECT2/Pebble and its binding partners RacGAP1/MgcRacGAP/CYK4/Tum and MKLP1/KIF23/ZEN4/Pav. Cell cycle control of these Rho activators is mediated by the Aurora A and B kinases, which act redundantly during mitotic rounding. Thus, in Drosophila pseudostratified epithelia, disruption of adherens junctions during mitosis necessitates planar spindle orientation by septate junctions to maintain epithelial integrity.


Subject(s)
Adherens Junctions , Spindle Apparatus , Animals , Drosophila/genetics , Epithelial Cells , Mitosis
10.
PLoS Biol ; 17(10): e3000509, 2019 10.
Article in English | MEDLINE | ID: mdl-31613895

ABSTRACT

The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Epithelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Phosphatidylinositol 3-Kinase/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Trans-Activators/genetics , 3-Phosphoinositide-Dependent Protein Kinases/genetics , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , Animals , Biomechanical Phenomena , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Cell Polarity , Cell Proliferation , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Epithelial Cells/cytology , Female , Gene Expression Regulation, Developmental , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Larva/cytology , Larva/genetics , Larva/growth & development , Larva/metabolism , Mechanotransduction, Cellular , Mice , Nuclear Proteins/metabolism , Ovarian Follicle/cytology , Ovarian Follicle/growth & development , Ovarian Follicle/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Trans-Activators/metabolism , Wings, Animal/cytology , Wings, Animal/growth & development , Wings, Animal/metabolism , YAP-Signaling Proteins
11.
Dev Cell ; 51(1): 2-3, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31593650

ABSTRACT

In this issue of Developmental Cell, Gibson and colleagues (Ramanathan et al., 2019) investigate the relationship between size and shape in epithelial cells. They find that cell size impacts cell shape, with unexpected consequences for epithelial growth and morphogenesis, particularly the clonal dynamics of epithelial cells.


Subject(s)
Epithelial Cells , Cell Shape , Cell Size , Epithelium , Morphogenesis
12.
Elife ; 82019 10 29.
Article in English | MEDLINE | ID: mdl-31661072

ABSTRACT

Mask family proteins were discovered in Drosophila to promote the activity of the transcriptional coactivator Yorkie (Yki), the sole fly homolog of mammalian YAP (YAP1) and TAZ (WWTR1). The molecular function of Mask, or its mammalian homologs Mask1 (ANKHD1) and Mask2 (ANKRD17), remains unclear. Mask family proteins contain two ankyrin repeat domains that bind Yki/YAP as well as a conserved nuclear localisation sequence (NLS) and nuclear export sequence (NES), suggesting a role in nucleo-cytoplasmic transport. Here we show that Mask acts to promote nuclear import of Yki, and that addition of an ectopic NLS to Yki is sufficient to bypass the requirement for Mask in Yki-driven tissue growth. Mammalian Mask1/2 proteins also promote nuclear import of YAP, as well as stabilising YAP and driving formation of liquid droplets. Mask1/2 and YAP normally colocalise in a granular fashion in both nucleus and cytoplasm, and are co-regulated during mechanotransduction.


Subject(s)
Active Transport, Cell Nucleus , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Animals , DNA-Binding Proteins/genetics , Drosophila , Drosophila Proteins/genetics , Nuclear Proteins/genetics , Protein Sorting Signals , Trans-Activators/genetics , YAP-Signaling Proteins
14.
J Cell Sci ; 132(8)2019 04 25.
Article in English | MEDLINE | ID: mdl-30872454

ABSTRACT

The elaboration of polarity is central to organismal development and to the maintenance of functional epithelia. Among the controls determining polarity are the PAR proteins, PAR6, aPKCι and PAR3, regulating both known and unknown effectors. Here, we identify FARP2 as a 'RIPR' motif-dependent partner and substrate of aPKCι that is required for efficient polarisation and junction formation. Binding is conferred by a FERM/FA domain-kinase domain interaction and detachment promoted by aPKCι-dependent phosphorylation. FARP2 is shown to promote GTP loading of Cdc42, which is consistent with it being involved in upstream regulation of the polarising PAR6-aPKCι complex. However, we show that aPKCι acts to promote the localised activity of FARP2 through phosphorylation. We conclude that this aPKCι-FARP2 complex formation acts as a positive feedback control to drive polarisation through aPKCι and other Cdc42 effectors.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Epithelial Cells/cytology , Guanine Nucleotide Exchange Factors/metabolism , Protein Kinase C/metabolism , Tight Junctions/metabolism , cdc42 GTP-Binding Protein/metabolism , Caco-2 Cells , Cell Polarity , Guanine Nucleotide Exchange Factors/genetics , HCT116 Cells , Humans , Phosphorylation
15.
J Cell Sci ; 131(22)2018 11 22.
Article in English | MEDLINE | ID: mdl-30404826

ABSTRACT

Human cells can sense mechanical stress acting upon integrin adhesions and respond by sending the YAP (also known as YAP1) and TAZ (also known as WWTR1) transcriptional co-activators to the nucleus to drive TEAD-dependent transcription of target genes. How integrin signaling activates YAP remains unclear. Here, we show that integrin-mediated mechanotransduction requires the Enigma and Enigma-like proteins (PDLIM7 and PDLIM5, respectively; denoted for the family of PDZ and LIM domain-containing proteins). YAP binds to PDLIM5 and PDLIM7 (hereafter PDLIM5/7) via its C-terminal PDZ-binding motif (PBM), which is essential for full nuclear localization and activity of YAP. Accordingly, silencing of PDLIM5/7 expression reduces YAP nuclear localization, tyrosine phosphorylation and transcriptional activity. The PDLIM5/7 proteins are recruited from the cytoplasm to integrin adhesions and F-actin stress fibers in response to force by binding directly to the key stress fiber component α-actinin. Thus, forces acting on integrins recruit Enigma family proteins to trigger YAP activation during mechanotransduction.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , LIM Domain Proteins/metabolism , Transcription Factors/metabolism , Animals , Caco-2 Cells , Fibroblasts/metabolism , HEK293 Cells , Humans , Integrins/metabolism , Mechanotransduction, Cellular , Mice , Signal Transduction , Trans-Activators , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
16.
Dev Cell ; 46(1): 23-39.e5, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29974861

ABSTRACT

Epithelial tissues can elongate in two dimensions by polarized cell intercalation, oriented cell division, or cell shape change, owing to local or global actomyosin contractile forces acting in the plane of the tissue. In addition, epithelia can undergo morphogenetic change in three dimensions. We show that elongation of the wings and legs of Drosophila involves a columnar-to-cuboidal cell shape change that reduces cell height and expands cell width. Remodeling of the apical extracellular matrix by the Stubble protease and basal matrix by MMP1/2 proteases induces wing and leg elongation. Matrix remodeling does not occur in the haltere, a limb that fails to elongate. Limb elongation is made anisotropic by planar polarized Myosin-II, which drives convergent extension along the proximal-distal axis. Subsequently, Myosin-II relocalizes to lateral membranes to accelerate columnar-to-cuboidal transition and isotropic tissue expansion. Thus, matrix remodeling induces dynamic changes in actomyosin contractility to drive epithelial morphogenesis in three dimensions.


Subject(s)
Body Patterning/physiology , Drosophila melanogaster/embryology , Epithelial Cells/cytology , Lower Extremity/embryology , Morphogenesis/physiology , Wings, Animal/embryology , Animals , Cell Polarity/physiology , Cell Shape/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Embryo, Nonmammalian/embryology , Epithelium/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 2/metabolism , Membrane Proteins/metabolism , Myosin Type II/metabolism , Serine Endopeptidases/metabolism
18.
Development ; 145(5)2018 03 08.
Article in English | MEDLINE | ID: mdl-29440303

ABSTRACT

Animal cells are thought to sense mechanical forces via the transcriptional co-activators YAP (or YAP1) and TAZ (or WWTR1), the sole Drosophila homolog of which is named Yorkie (Yki). In mammalian cells in culture, artificial mechanical forces induce nuclear translocation of YAP and TAZ. Here, we show that physiological mechanical strain can also drive nuclear localisation of Yki and activation of Yki target genes in the Drosophila follicular epithelium. Mechanical strain activates Yki by stretching the apical domain, reducing the concentration of apical Crumbs, Expanded, Kibra and Merlin, and reducing apical Hippo kinase dimerisation. Overexpressing Hippo kinase to induce ectopic activation in the cytoplasm is sufficient to prevent Yki nuclear localisation even in flattened follicle cells. Conversely, blocking Hippo signalling in warts clones causes Yki nuclear localisation even in columnar follicle cells. We find no evidence for involvement of other pathways, such as Src42A kinase, in regulation of Yki. Finally, our results in follicle cells appear generally applicable to other tissues, as nuclear translocation of Yki is also readily detectable in other flattened epithelial cells such as the peripodial epithelium of the wing imaginal disc, where it promotes cell flattening.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Stress, Mechanical , Wings, Animal/embryology , Animals , Animals, Genetically Modified , Body Patterning/genetics , Cell Nucleus/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Imaginal Discs/embryology , Imaginal Discs/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mechanotransduction, Cellular/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Transport/genetics , Signal Transduction/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism , Wings, Animal/metabolism , YAP-Signaling Proteins
19.
Cell Rep ; 22(7): 1639-1646, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29444419

ABSTRACT

Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia.


Subject(s)
Cell Membrane/metabolism , Cell Polarity , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , Epithelial Cells/cytology , Epithelial Cells/enzymology , p21-Activated Kinases/metabolism , Amino Acid Sequence , Animals , Caco-2 Cells , Drosophila Proteins/metabolism , Humans , Mice , Phosphorylation , Protein Kinase C/metabolism , RNA Interference , p21-Activated Kinases/chemistry
20.
Curr Opin Cell Biol ; 51: 117-123, 2018 04.
Article in English | MEDLINE | ID: mdl-29477107

ABSTRACT

Mechanical stretch forces can control the growth of epithelial tissues such as mammalian skin, whose surface area is precisely coordinated with body size. In skin keratinocytes cultured in vitro, mechanical forces acting via Integrin adhesions and the actin cytoskeleton have been shown to induce nuclear translocation of YAP/TAZ co-activators to induce cell proliferation. Furthermore, conditional knockouts of both YAP (also called YAP1) and TAZ (also called WWTR1) in mouse skin resemble the phenotype of skin-specific loss of Integrin beta1 (ITGB1), indicating that this signalling mechanism is important in vivo. Curiously, Integrins are dispensable in Drosophila to activate the sole YAP/TAZ homolog Yorkie (Yki), which has lost the C-terminal PDZ-binding motif needed to promote nuclear localization of YAP/TAZ in mammalian cells. Differences in the structure of the epidermis between deuterostomes (e.g.: stratified squamous skin of mammals) and protostomes (e.g.: monolayered columnar epidermis of Drosophila) may explain this evolutionary divergence. Monolayered columnar epithelia feature a well-differentiated apical membrane domain, where proteins such as Crumbs, Expanded, Merlin and Kibra activate the Hippo pathway to repress Drosophila Yki. Stratified squamous epithelia lack an apical domain and thus depend primarily on basal Integrin adhesions to activate YAP/TAZ in basal layer stem cells via multiple postulated signalling mechanisms. Finally, YAP and TAZ retain the ability to sense the apical domain in the columnar epithelial cells lining internal organs such as the lung bronchus, where YAP/TAZ localize to the nucleus in proliferating basal layer stem cells but translocate to the cytoplasm in differentiated columnar cells.


Subject(s)
Drosophila Proteins/metabolism , Epithelium/metabolism , Mechanotransduction, Cellular/genetics , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Drosophila , Humans , Signal Transduction , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...