Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Ecol Evol ; 12(8): e9161, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36035267

ABSTRACT

The Jemez Mountains salamander (Plethodon neomexicanus; hereafter JMS) is an endangered salamander restricted to the Jemez Mountains in north-central New Mexico, United States. This strictly terrestrial and lungless species requires moist surface conditions for activities such as mating and foraging. Threats to its current habitat include fire suppression and ensuing severe fires, changes in forest composition, habitat fragmentation, and climate change. Forest composition changes resulting from reduced fire frequency and increased tree density suggest that its current aboveground habitat does not mirror its historically successful habitat regime. However, because of its limited habitat area and underground behavior, we hypothesized that geology and topography might play a significant role in the current distribution of the salamander. We modeled the distribution of the JMS using a machine learning algorithm to assess how geology, topography, and climate variables influence its distribution. The best habitat suitability model indicates that geology type and maximum winter temperature (November to March) were most important in predicting the distribution of the salamander (23.5% and 50.3% permutation importance, respectively). Minimum winter temperature was also an important variable (21.4%), suggesting this also plays a role in salamander habitat. Our habitat suitability map reveals low uncertainty in model predictions, and we found slight discrepancies between the designated critical habitat and the most suitable areas for the JMS. Because geological features are important to its distribution, we recommend that geological and topographical data are considered, both during survey design and in the description of localities of JMS records once detected.

2.
Animals (Basel) ; 12(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35203161

ABSTRACT

Birds are good indicators of environmental change and are often studied for responses to climate. Many studies focus on breeding birds, while fewer look at the migration period, which is a critical time for many birds. Birds are more susceptible to unusual climatic events during their migration due to the metabolic stress of long-distance movements. In the fall of 2020, an unusual cold weather event coupled with drought and wildfire smoke led to a large avian mortality event in New Mexico. Later analysis pointed to the mortality being largely due to starvation. This was the impetus for our research. We used 11 years of fall bird banding data from two locations, along with local drought indices, to determine what predicts avian health during the migration period. We used fat score data from over 15,000 individual birds to assess whether drought indices, age, diet, or residency influenced avian health using multiple logistic regression. We found that the probability of positive fat scores decreased as drought severity increased for younger, insectivorous, migratory birds. Insectivores had a higher probability of receiving a fat score greater than zero relative to local drought conditions, which is important, since many North American insectivores are in steep decline. Migratory birds showed a greater response than year-round residents, and older birds showed a lower but significant response compared to hatch-year birds. Our results suggest that migratory insectivores in the southwestern United States may be less resilient to drought-related climate change.

3.
PLoS One ; 15(9): e0238870, 2020.
Article in English | MEDLINE | ID: mdl-32941472

ABSTRACT

Monitoring the ecological impacts of environmental pollution and the effectiveness of remediation efforts requires identifying relationships between contaminants and the disruption of biological processes in populations, communities, or ecosystems. Wildlife are useful bioindicators, but traditional comparative experimental approaches rely on a staunch and typically unverifiable assumption that, in the absence of contaminants, reference and contaminated sites would support the same densities of bioindicators, thereby inferring direct causation from indirect data. We demonstrate the utility of spatial capture-recapture (SCR) models for overcoming these issues, testing if community density of common small mammal bioindicators was directly influenced by soil chemical concentrations. By modeling density as an inhomogeneous Poisson point process, we found evidence for an inverse spatial relationship between Peromyscus density and soil mercury concentrations, but not other chemicals, such as polychlorinated biphenyls, at a site formerly occupied by a nuclear reactor. Although the coefficient point estimate supported Peromyscus density being lower where mercury concentrations were higher (ß = -0.44), the 95% confidence interval overlapped zero, suggesting no effect was also compatible with our data. Estimated density from the most parsimonious model (2.88 mice/ha; 95% CI = 1.63-5.08), which did not support a density-chemical relationship, was within the range of reported densities for Peromyscus that did not inhabit contaminated sites elsewhere. Environmental pollution remains a global threat to biodiversity and ecosystem and human health, and our study provides an illustrative example of the utility of SCR models for investigating the effects that chemicals may have on wildlife bioindicator populations and communities.


Subject(s)
Ecological Parameter Monitoring/methods , Environmental Biomarkers , Mammals/physiology , Models, Biological , Soil Pollutants/analysis , Soil/chemistry , Animal Distribution , Animals , Ecological Parameter Monitoring/statistics & numerical data , Ecosystem , Environmental Pollution/analysis , Environmental Restoration and Remediation , Female , Male , Mice , Population Density , Soil Pollutants/pharmacology , Spatial Analysis
4.
Ecol Appl ; 28(7): 1773-1781, 2018 10.
Article in English | MEDLINE | ID: mdl-29786900

ABSTRACT

Drought stress is an important consideration for wildlife in arid and semiarid regions under climate change. Drought can impact plant and animal populations directly, through effects on their physiology, as well as indirectly through effects on vegetation productivity and resource availability, and by creating conditions conducive to secondary disturbance, such as wildfire. We implemented a novel approach to understanding community-level demographic responses of birds and their habitats to these stressors in the context of climate change at 14 study sites in the Four Corners region of the southwestern United States. A large wildfire affecting three of the sites provided a natural experiment for also examining fire effects on vegetation and the bird community. We assessed (1) trends in drought and end-of-century (2071-2100) predicted average drought conditions under mid-range and high greenhouse gas concentration trajectory scenarios; (2) effects of drought and fire on habitat (vegetation greenness); and (3) effects of drought and fire on community-level avian productivity and adult apparent survival rates. Drought has increased and is expected to increase further at our study sites under climate change. Under spring drought conditions, vegetation greenness and avian productivity declined, while summer drought appeared to negatively affect adult apparent survival rates. Response to fire was mixed; in the year of the fire, avian productivity declined, but was higher than normal for several years post-fire. Our results highlight important links between environmental stressors and avian vital rates that will likely affect population trajectories in this region under climate change. We suggest that the use and continued development of community-level demographic models will provide useful tool for leveraging sparse species-level data to provide multi-species inferences and inform conservation.


Subject(s)
Birds/physiology , Climate Change , Droughts , Ecosystem , Fires , Animals , Demography , Population Dynamics , Southwestern United States
SELECTION OF CITATIONS
SEARCH DETAIL