Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Small ; : e2309493, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072779

ABSTRACT

Sulfonic acid-containing bioorganic monomers with wide molecular designability and abundant hydrogen bonding sites hold great potential to design diverse functional biocrystals but have so far not been explored for piezoelectric energy harvesting applications due to the lack of strategies to break the centrosymmetry of their assemblies. Here, a significant molecular packing transformation from centrosymmetric into non-centrosymmetric conformation by the addition of an amide terminus in the sulfonic acid-containing bioorganic molecule is demonstrated, allowing a high electromechanical response. The amide-functionalized molecule self-assembles into a polar supramolecular parallel ß-sheet-like structure with a high longitudinal piezoelectric coefficient d11 = 15.9 pm V-1 that produces the maximal open-circuit voltage of >1 V and the maximal power of 18 nW in nanogenerator devices pioneered. By contrast, molecules containing an amino or a cyclohexyl terminus assemble into highly symmetric 3D hydrogen bonding diamondoid-like networks or 2D double layer structures that show tunable morphologies, thermostability, and mechanical properties but non-piezoelectricity. This work not only presents a facile approach to achieving symmetry transformation of bioorganic assemblies but also demonstrates the terminal group and the property correlation for tailor-made design of high-performance piezoelectric biomaterials.

2.
ACS Appl Mater Interfaces ; 15(41): 48015-48026, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37797325

ABSTRACT

Proteins unfold in chaotropic salt solutions, a process that is difficult to observe at the single protein level. The work presented here demonstrates that a liquid-based atomic force microscope and graphene liquid-cell-based scanning transmission electron microscope make it possible to observe chemically induced protein unfolding. To illustrate this capability, ferritin proteins were deposited on a graphene surface, and the concentration-dependent urea- or guanidinium-induced changes of morphology were monitored for holo-ferritin with its ferrihydrite core as well as apo-ferritin without this core. Depending on the chaotropic agent the liquid-based imaging setup captured an unexpected transformation of natively folded holo-ferritin proteins into rings after urea treatment but not after guanidinium treatment. Urea treatment of apo-ferritin did not result in nanorings, confirming that nanorings are a specific signature of denaturation of holo-ferritins after exposture to sufficiently high urea concentrations. Mapping the in situ images with molecular dynamics simulations of ferritin subunits in urea solutions suggests that electrostatic destabilization triggers denaturation of ferritin as urea makes direct contact with the protein and also disrupts the water H-bonding network in the ferritin solvation shell. Our findings deepen the understanding of protein denaturation studied using label-free techniques operating at the solid-liquid interface.


Subject(s)
Graphite , Guanidine/chemistry , Protein Denaturation , Ferritins , Urea/chemistry
3.
Biomolecules ; 13(9)2023 09 21.
Article in English | MEDLINE | ID: mdl-37759826

ABSTRACT

Lysophosphatidic acid (LPA) is a promising biomarker candidate to screen for ovarian cancer (OC) and potentially stratify and treat patients according to disease stage. LPA is known to target the actin-binding protein gelsolin which is a key regulator of actin filament assembly. Previous studies have shown that the phosphate headgroup of LPA alone is inadequate to bind to the short chain of amino acids in gelsolin known as the PIP2-binding domain. Thus, the molecular-level detail of the mechanism of LPA binding is poorly understood. Here, we model LPA binding to the PIP2-binding domain of gelsolin in the gelsolin-actin complex through extensive ten-microsecond atomistic molecular dynamics (MD) simulations. We predict that LPA binding causes a local conformational rearrangement due to LPA interactions with both gelsolin and actin residues. These conformational changes are a result of the amphipathic nature of LPA, where the anionic phosphate, polar glycerol and ester groups, and lipophilic aliphatic tail mediate LPA binding via charged electrostatic, hydrogen bonding, and van der Waals interactions. The negatively-charged LPA headgroup binds to the PIP2-binding domain of gelsolin-actin while its hydrophobic tail is inserted into actin, creating a strong LPA-insertion pocket that weakens the gelsolin-actin interface. The computed structure, dynamics, and energetics of the ternary gelsolin-LPA-actin complex confirms that a quantitative OC assay is possible based on LPA-triggered actin release from the gelsolin-actin complex.


Subject(s)
Biomarkers, Tumor , Ovarian Neoplasms , Female , Humans , Actins , Gelsolin , Lysophospholipids , Ovarian Neoplasms/diagnosis , Static Electricity , Hydrophobic and Hydrophilic Interactions
4.
Nat Commun ; 14(1): 5639, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704605

ABSTRACT

Highly-efficient molecular photoswitching occurs ex-situ but not to-date inside electronic devices due to quenching of excited states by background interactions. Here we achieve fully reversible in-situ mechano-optoelectronic switching in self-assembled monolayers (SAMs) of tetraphenylethylene molecules by bending their supporting electrodes to maximize aggregation-induced emission (AIE). We obtain stable, reversible switching across >1600 on/off cycles with large on/off ratio of (3.8 ± 0.1) × 103 and 140 ± 10 ms switching time which is 10-100× faster than other approaches. Multimodal characterization shows mechanically-controlled emission with UV-light enhancing the Coulomb interaction between the electrons and holes resulting in giant enhancement of molecular conductance. The best mechano-optoelectronic switching occurs in the most concave architecture that reduces ambient single-molecule conformational entropy creating artificially-tightened supramolecular assemblies. The performance can be further improved to achieve ultra-high switching ratio on the order of 105 using tetraphenylethylene derivatives with more AIE-active sites. Our results promise new applications from optimized interplay between mechanical force and optics in soft electronics.

5.
J Am Chem Soc ; 145(28): 15331-15342, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37392396

ABSTRACT

Variation in the molecular architecture significantly affects the electronic and supramolecular structure of biomolecular assemblies, leading to dramatically altered piezoelectric response. However, relationship between molecular building block chemistry, crystal packing and quantitative electromechanical response is still not fully understood. Herein, we systematically explored the possibility to amplify the piezoelectricity of amino acid-based assemblies by supramolecular engineering. We show that a simple change of side-chain in acetylated amino acids leads to increased polarization of the supramolecular arrangements, resulting in significant enhancement of their piezoelectric response. Moreover, compared to most of the natural amino acid assemblies, chemical modification of acetylation increased the maximum piezoelectric tensors. The predicted maximal piezoelectric strain tensor and voltage constant of acetylated tryptophan (L-AcW) assemblies reach 47 pm V-1 and 1719 mV m/N, respectively, comparable to commonly used inorganic materials such as bismuth triborate crystals. We further fabricated an L-AcW crystal-based piezoelectric power nanogenerator that produces a high and stable open-circuit voltage of over 1.4 V under mechanical pressure. For the first time, the illumination of a light-emitting diode (LED) is demonstrated by the power output of an amino acid-based piezoelectric nanogenerator. This work presents the supramolecular engineering toward the systematic modulation of piezoelectric response in amino acid-based assemblies, facilitating the development of high-performance functional biomaterials from simple, readily available, and easily tailored building blocks.


Subject(s)
Amino Acids , Tryptophan , Acetylation , Biocompatible Materials , Bismuth
6.
J Chem Inf Model ; 63(15): 4934-4947, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37523325

ABSTRACT

Peptides are sustainable alternatives to conventional therapeutics for G protein-coupled receptor (GPCR) linked disorders, promising biocompatible and tailorable next-generation therapeutics for metabolic disorders including type-2 diabetes, as agonists of the glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R). However, single agonist peptides activating GLP-1R to stimulate insulin secretion also suppress obesity-linked glucagon release. Hence, bioactive peptides cotargeting GCGR and GLP-1R may remediate the blood glucose and fatty acid metabolism imbalance, tackling both diabetes and obesity to supersede current monoagonist therapy. Here, we design and model optimized peptide sequences starting from peptide sequences derived from earlier phage-displayed library screening, identifying those with predicted molecular binding profiles for dual agonism of GCGR and GLP-1R. We derive design rules from extensive molecular dynamics simulations based on peptide-receptor binding. Our newly designed coagonist peptide exhibits improved predicted coupled binding affinity for GCGR and GLP-1R relative to endogenous ligands and could in the future be tested experimentally, which may provide superior glycemic and weight loss control.


Subject(s)
Diabetes Mellitus , Glucagon , Humans , Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/metabolism , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Peptides/pharmacology , Obesity/metabolism
7.
Angew Chem Int Ed Engl ; 62(38): e202305759, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37338105

ABSTRACT

Artificial metallo-nucleases (AMNs) are promising DNA damaging drug candidates. Here, we demonstrate how the 1,2,3-triazole linker produced by the Cu-catalysed azide-alkyne cycloaddition (CuAAC) reaction can be directed to build Cu-binding AMN scaffolds. We selected biologically inert reaction partners tris(azidomethyl)mesitylene and ethynyl-thiophene to develop TC-Thio, a bioactive C3 -symmetric ligand in which three thiophene-triazole moieties are positioned around a central mesitylene core. The ligand was characterised by X-ray crystallography and forms multinuclear CuII and CuI complexes identified by mass spectrometry and rationalised by density functional theory (DFT). Upon Cu coordination, CuII -TC-Thio becomes a potent DNA binding and cleaving agent. Mechanistic studies reveal DNA recognition occurs exclusively at the minor groove with subsequent oxidative damage promoted through a superoxide- and peroxide-dependent pathway. Single molecule imaging of DNA isolated from peripheral blood mononuclear cells shows that the complex has comparable activity to the clinical drug temozolomide, causing DNA damage that is recognised by a combination of base excision repair (BER) enzymes.


Subject(s)
Click Chemistry , Copper , Copper/chemistry , Leukocytes, Mononuclear/metabolism , Ligands , DNA/chemistry , Azides/chemistry
8.
ACS Nanosci Au ; 3(3): 241-255, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37360843

ABSTRACT

Understanding the dose-dependent effect of over-the-counter drugs on red blood cells (RBCs) is crucial for hematology and digital pathology. Yet, it is challenging to continuously record the real-time, drug-induced shape changes of RBCs in a label-free manner. Here, we demonstrate digital holotomography (DHTM)-enabled real-time, label-free concentration-dependent and time-dependent monitoring of ibuprofen on RBCs from a healthy donor. The RBCs are segmented based on three-dimensional (3D) and four-dimensional (4D) refractive index tomograms, and their morphological and chemical parameters are retrieved with their shapes classified using machine learning. We directly observed the formation and motion of spicules on the RBC membrane when aqueous solutions of ibuprofen were drop-cast on wet blood, creating rough-membraned echinocyte forms. At low concentrations of 0.25-0.50 mM, the ibuprofen-induced morphological change was transient, but at high concentrations (1-3 mM) the spiculated RBC remained over a period of up to 1.5 h. Molecular simulations confirmed that aggregates of ibuprofen molecules at high concentrations significantly disrupted the RBC membrane structural integrity and lipid order but produced negligible effect at low ibuprofen concentrations. Control experiments on the effect of urea, hydrogen peroxide, and aqueous solutions on RBCs showed zero spicule formation. Our work clarifies the dose-dependent chemical effects on RBCs using label-free microscopes that can be deployed for the rapid detection of overdosage of over-the-counter and prescribed drugs.

10.
J Phys Chem C Nanomater Interfaces ; 127(11): 5533-5543, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36998252

ABSTRACT

The ability to encode and embed desired mechanical properties into active pharmaceutical ingredient solid forms would significantly advance drug development. In recent years, computational methods, particularly dispersion-corrected density functional theory (DFT), have come of age, opening the possibility of reliably predicting and rationally engineering the mechanical response of molecular crystals. Here, many-body dispersion and Tkatchenko-Scheffler dispersion-corrected DFT were used to calculate the elastic constants of a series of archetypal systems, including paracetamol and aspirin polymorphs and model hydrogen-bonded urea and π-π-bound benzene crystals, establishing their structure-mechanics relations. Both methods showed semiquantitative and excellent qualitative agreement with experiment. The calculations revealed that the plane of maximal Young's modulus generally coincides with extended H-bond or π-π networks, showing how programmable supramolecular packing dictates the mechanical behavior. In a pharmaceutical setting, these structure-mechanics relations can steer the molecular design of solid forms with improved physicochemical and compression properties.

11.
Small ; 19(2): e2205142, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36398602

ABSTRACT

Lithium (Li) metal batteries (LMBs) provide superior energy densities far beyond current Li-ion batteries (LIBs) but practical applications are hindered by uncontrolled dendrite formation and the build-up of dead Li in "hostless" Li metal anodes. To circumvent these issues, we created a 3D framework of a carbon paper (CP) substrate decorated with lithiophilic nanowires (silicon (Si), germanium (Ge), and SiGe alloy NWs) that provides a robust host for efficient stripping/plating of Li metal. The lithiophilic Li22 Si5 , Li22 (Si0.5 Ge0.5 )5, and Li22 Ge5 formed during rapid Li melt infiltration prevented the formation of dead Li and dendrites. Li22 Ge5 /Li covered CP hosts delivered the best performance, with the lowest overpotentials of 40 mV (three times lower than pristine Li) when cycled at 1 mA cm-2 /1 mAh cm-2 for 1000 h and at 3 mA cm-2 /3 mAh cm-2 for 500 h. Ex situ analysis confirmed the ability of the lithiophilic Li22 Ge5 decorated samples to facilitate uniform Li deposition. When paired with sulfur, LiFePO4, and NMC811 cathodes, the CP-LiGe/Li anodes delivered 200 cycles with 82%, 93%, and 90% capacity retention, respectively. The discovery of the highly stable, lithiophilic NW decorated CP hosts is a promising route toward stable cycling LMBs and provides a new design motif for hosted Li metal anodes.

12.
Adv Mater ; 35(37): e2204551, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36043246

ABSTRACT

Electronic transitions in molecular-circuit elements hinge on complex interactions between molecules and ions, offering a multidimensional parameter space to embed, access, and optimize material functionalities for target-specific applications. This opportunity is not cultivated in molecular memristors because their low-temperature charge transport, which is a route to decipher molecular many-body interactions, is unexplored. To address this, robust, temperature-resilient molecular memristors based on a Ru complex of an azo aromatic ligand are designed, and current-voltage sweep measurements from room temperature down to 2 K with different cooling protocols are performed. By freezing out or activating different components of supramolecular dynamics, the local Coulombic interactions between the molecules and counterions that affect the electronic transport can be controlled. Operating conditions are designed where functionalities spanning bipolar, unipolar, nonvolatile, and volatile memristors with sharp as well as gradual analog transitions are captured within a single device. A mathematical design space evolves, thereof comprising 36 tuneable parameters in which all possible steady-state functional variations in a memristor characteristic can be attainable. This enables a deterministic design route to engineer neuromorphic devices with unprecedented control over the transformation characteristics governing their functional flexibility and tunability.

13.
Nat Commun ; 13(1): 7059, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400783

ABSTRACT

Homochirality is a fundamental feature of all known forms of life, maintaining biomolecules (amino-acids, proteins, sugars, nucleic acids) in one specific chiral form. While this condition is central to biology, the mechanisms by which the adverse accumulation of non-L-α-amino-acids in proteins lead to pathophysiological consequences remain poorly understood. To address how heterochirality build-up impacts organism's health, we use chiral-selective in vivo assays to detect protein-bound non-L-α-amino acids (focusing on aspartate) and assess their functional significance in Drosophila. We find that altering the in vivo chiral balance creates a 'heterochirality syndrome' with impaired caspase activity, increased tumour formation, and premature death. Our work shows that preservation of homochirality is a key component of protein function that is essential to maintain homeostasis across the cell, tissue and organ level.


Subject(s)
Amino Acids , Proteins , Stereoisomerism , Amino Acids/chemistry , Proteins/chemistry
14.
Nat Mater ; 21(12): 1403-1411, 2022 12.
Article in English | MEDLINE | ID: mdl-36411348

ABSTRACT

To realize molecular-scale electrical operations beyond the von Neumann bottleneck, new types of multifunctional switches are needed that mimic self-learning or neuromorphic computing by dynamically toggling between multiple operations that depend on their past. Here, we report a molecule that switches from high to low conductance states with massive negative memristive behaviour that depends on the drive speed and number of past switching events, with all the measurements fully modelled using atomistic and analytical models. This dynamic molecular switch emulates synaptic behavior and Pavlovian learning, all within a 2.4-nm-thick layer that is three orders of magnitude thinner than a neuronal synapse. The dynamic molecular switch provides all the fundamental logic gates necessary for deep learning because of its time-domain and voltage-dependent plasticity. The synapse-mimicking multifunctional dynamic molecular switch represents an adaptable molecular-scale hardware operable in solid-state devices, and opens a pathway to simplify dynamic complex electrical operations encoded within a single ultracompact component.


Subject(s)
Electricity
15.
ACS Appl Mater Interfaces ; 14(41): 46827-46840, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36206330

ABSTRACT

The potential of ultra-short peptides to self-assemble into well-ordered functional nanostructures makes them promising minimal components for mimicking the basic ingredient of nature and diverse biomaterials. However, selection and modular design of perfect de novo sequences are extremely tricky due to their vast possible combinatorial space. Moreover, a single amino acid substitution can drastically alter the supramolecular packing structure of short peptide assemblies. Here, we report the design of rigid hybrid hydrogels produced by sequence engineering of a new series of ultra-short collagen-mimicking tripeptides. Connecting glycine with different combinations of proline and its post-translational product 4-hydroxyproline, the single triplet motif, displays the natural collagen-helix-like structure. Improved mechanical rigidity is obtained via co-assembly with the non-collagenous hydrogelator, fluorenylmethoxycarbonyl (Fmoc) diphenylalanine. Characterizations of the supramolecular interactions that promote the self-supporting and self-healing properties of the co-assemblies are performed by physicochemical experiments and atomistic models. Our results clearly demonstrate the significance of sequence engineering to design functional peptide motifs with desired physicochemical and electromechanical properties and reveal co-assembly as a promising strategy for the utilization of small, readily accessible biomimetic building blocks to generate hybrid biomolecular assemblies with structural heterogeneity and functionality of natural materials.


Subject(s)
Hydrogels , Peptides , Hydrogels/chemistry , Hydroxyproline , Peptides/chemistry , Biocompatible Materials/chemistry , Collagen , Glycine
16.
J Am Chem Soc ; 144(40): 18375-18386, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36164777

ABSTRACT

Supramolecular packing dictates the physical properties of bio-inspired molecular assemblies in the solid state. Yet, modulating the stacking modes of bio-inspired supramolecular assemblies remains a challenge and the structure-property relationship is still not fully understood, which hampers the rational design of molecular structures to fabricate materials with desired properties. Herein, we present a co-assembly strategy to modulate the supramolecular packing of N-terminally capped alanine-based assemblies (Ac-Ala) by changing the amino acid chirality and mixing with a nonchiral bipyridine derivative (BPA). The co-assembly induced distinct solid-state stacking modes determined by X-ray crystallography, resulting in significantly enhanced electromechanical properties of the assembly architectures. The highest rigidity was observed after the co-assembly of racemic Ac-Ala with a bipyridine coformer (BPA/Ac-DL-Ala), which exhibited a measured Young's modulus of 38.8 GPa. Notably, BPA crystallizes in a centrosymmetric space group, a condition that is broken when co-crystallized with Ac-L-Ala and Ac-D-Ala to induce a piezoelectric response. Enantiopure co-assemblies of BPA/Ac-D-Ala and BPA/Ac-L-Ala showed density functional theory-predicted piezoelectric responses that are remarkably higher than the other assemblies due to the increased polarization of their supramolecular packing. This is the first report of a centrosymmetric-crystallizing coformer which increases the single-crystal piezoelectric response of an electrically active bio-inspired molecular assembly. The design rules that emerge from this investigation of chemically complex co-assemblies can facilitate the molecular design of high-performance functional materials comprised of bio-inspired building blocks.


Subject(s)
Alanine , Amino Acids , Crystallography, X-Ray , Molecular Structure
17.
Biomacromolecules ; 23(9): 3875-3886, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35916698

ABSTRACT

Antibody therapy generally requires parenteral injection to attain the required bioavailability and pharmacokinetics, but improved formulations may slow enzymatic degradation of the antibody in the gastrointestinal tract, permitting the use of noninvasive oral delivery. Rationally designed carrier materials can potentially improve therapeutic activity both by shielding fragile biopharmaceuticals from proteolytic degradation and targeting specific receptors in vivo. One potentially useful class of protein carriers is block copolyelectrolytes, one polyelectrolyte plus one neutral hydrophilic polymer block, that self-assemble into stable micelles, providing a simple and biocompatible nanocapsule separating the protein from the outer medium. Here, we develop and implement an integrated mesoscale model to design molecular structures for block copolyelectrolyte nanocapsules predicted to protect Trastuzumab, an antibody used to treat breast cancer, in the low pH gastrointestinal tract and to selectively release this antibody in the more neutral intestinal environment. The simulations show a tightly packed self-assembled core-shell structure at pH = 3 that is ruptured and dynamically reassembled into a weaker structure at pH = 7. Our model identifies that the designed block copolyelectrolyte characteristics, such as block length ratio, can control the level of drug protection and release in vivo, providing simple design rules for engineering polyelectrolyte-based formulations that may allow oral administration of targeted antibody chemotherapies.


Subject(s)
Nanocapsules , Administration, Oral , Drug Carriers/chemistry , Hydrophobic and Hydrophilic Interactions , Micelles , Nanocapsules/chemistry , Polyelectrolytes , Trastuzumab
19.
Biotechnol Biofuels Bioprod ; 15(1): 68, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725490

ABSTRACT

BACKGROUND: Natural cellulosome multi-enzyme complexes, their components, and engineered 'designer cellulosomes' (DCs) promise an efficient means of breaking down cellulosic substrates into valuable biofuel products. Their broad uptake in biotechnology relies on boosting proximity-based synergy among the resident enzymes, but the modular architecture challenges structure determination and rational design. RESULTS: We used small angle X-ray scattering combined with molecular modeling to study the solution structure of cellulosomal components. These include three dockerin-bearing cellulases with distinct substrate specificities, original scaffoldins from the human gut bacterium Ruminococcus champanellensis (ScaA, ScaH and ScaK) and a trivalent cohesin-bearing designer scaffoldin (Scaf20L), followed by cellulosomal complexes comprising these components, and the nonavalent fully loaded Clostridium thermocellum CipA in complex with Cel8A from the same bacterium. The size analysis of Rg and Dmax values deduced from the scattering curves and corresponding molecular models highlight their variable aspects, depending on composition, size and spatial organization of the objects in solution. CONCLUSIONS: Our data quantifies variability of form and compactness of cellulosomal components in solution and confirms that this native plasticity may well be related to speciation with respect to the substrate that is targeted. By showing that scaffoldins or components display enhanced compactness compared to the free objects, we provide new routes to rationally enhance their stability and performance in their environment of action.

20.
Adv Mater ; 34(26): e2202135, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35546046

ABSTRACT

Controllable single-molecule logic operations will enable development of reliable ultra-minimalistic circuit elements for high-density computing but require stable currents from multiple orthogonal inputs in molecular junctions. Utilizing the two unique adjacent conductive molecular orbitals (MOs) of gated Au/S-(CH2 )3 -Fc-(CH2 )9 -S/Au (Fc = ferrocene) single-electron transistors (≈2 nm), a stable single-electron logic calculator (SELC) is presented, which allows real-time modulation of output current as a function of orthogonal input bias (Vb ) and gate (Vg ) voltages. Reliable and low-voltage (ǀVb ǀ ≤ 80 mV, ǀVg ǀ ≤ 2 V) operations of the SELC depend upon the unambiguous association of current resonances with energy shifts of the MOs (which show an invariable, small energy separation of ≈100 meV) in response to the changes of voltages, which is confirmed by electron-transport calculations. Stable multi-logic operations based on the SELC modulated current conversions between the two resonances and Coulomb blockade regimes are demonstrated via the implementation of all universal 1-input (YES/NOT/PASS_1/PASS_0) and 2-input (AND/XOR/OR/NAND/NOR/INT/XNOR) logic gates.

SELECTION OF CITATIONS
SEARCH DETAIL
...