Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 331: 50-56, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36933668

ABSTRACT

BACKGROUND: Traumatic life events are associated with the development of psychiatric and chronic medical illnesses. This exploratory study examined the relationship between traumatic life events and the gut microbiota among adult psychiatric inpatients. METHODS: 105 adult psychiatric inpatients provided clinical data and a single fecal sample shortly after admission. A modified version of the Stressful Life Events Screening Questionnaire was used to quantify history of traumatic life events. 16S rRNA gene sequencing was used to analyze the gut microbial community. RESULTS: Gut microbiota diversity was not associated with overall trauma score or any of the three trauma factor scores. Upon item-level analysis, history of childhood physical abuse was uniquely associated with beta diversity. Linear Discriminant Analysis Effect Size (LefSe) analyses revealed that childhood physical abuse was associated with abundance of distinct bacterial taxa associated with inflammation. LIMITATIONS: This study did not account for dietary differences, though diet was highly restricted as all participants were psychiatric inpatients. Absolute variance accounted for by the taxa was small though practically meaningful. The study was not powered for full subgroup analysis based on race and ethnicity. CONCLUSIONS: This study is among the first to demonstrate a relationship between childhood physical abuse and gut microbiota composition among adult psychiatric patients. These findings suggest that early childhood adverse events may have long-conferred systemic consequences. Future efforts may target the gut microbiota for the prevention and/or treatment of psychiatric and medical risk associated with traumatic life events.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Adult , Child, Preschool , Gastrointestinal Microbiome/genetics , Inpatients , RNA, Ribosomal, 16S/genetics , Physical Abuse
2.
Article in English | MEDLINE | ID: mdl-36122838

ABSTRACT

BACKGROUND: Comorbid anxiety and depression are common and are associated with greater disease burden than either alone. Our recent efforts have identified an association between gut microbiota dysfunction and severity of anxiety and depression. In this follow-up, we applied Differential Co-Expression Analysis (DiffCoEx) to identify potential gut microbiota biomarker(s) candidates of treatment resistance among psychiatric inpatients. METHODS: In a sample of convenience, 100 psychiatric inpatients provided clinical data at admission and discharge; fecal samples were collected early during the hospitalization. Whole genome shotgun sequencing methods were used to process samples. DiffCoEx was used to identify clusters of microbial features significantly different based on treatment resistance status. Once overlapping features were identified, a knowledge-mining tool was used to review the literature using a list of microbial species/pathways and a select number of medical subject headlines (MeSH) terms relevant for depression, anxiety, and brain-gut-axis dysregulation. Network analysis used overlapping features to identify microbial interactions that could impact treatment resistance. RESULTS: DiffCoEx analyzed 10,403 bacterial features: 43/44 microbial features associated with depression treatment resistance overlapped with 43/114 microbial features associated with anxiety treatment resistance. Network analysis resulted in 8 biological interactions between 16 bacterial species. Clostridium perfringens evidenced the highest connection strength (0.95). Erysipelotrichaceae bacterium 6_1_45 has been most widely examined, is associated with inflammation and dysbiosis, but has not been associated with depression or anxiety. CONCLUSION: DiffCoEx potentially identified gut bacteria biomarker candidates of depression and anxiety treatment-resistance. Future efforts in psychiatric microbiology should examine the mechanistic relationship of identified pro-inflammatory species, potentially contributing to a biomarker-based algorithm for treatment resistance.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Depression , Inpatients , Anxiety , Biomarkers
3.
Biochem Biophys Res Commun ; 516(2): 344-349, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31208719

ABSTRACT

The preterm birth (PTB) rate in Harris County, Texas, exceeds the U.S. rate (11.4% vs.9.6%), and there are 15 active Superfund sites in Harris County. Polycyclic aromatic hydrocarbons (PAHs) are contaminants of concern (COC) at Superfund sites across the nation. In this investigation, we tested the hypothesis that higher levels of exposure to PAHs and PAH-DNA adducts in placenta of women living near Superfund sites contribute to the increased rate of PTBs. Levels of benzo[a]pyene (BP), benzo[b]fluorene (BbF) and dibenz[a,h]anthracene (DBA), were higher in placentae from preterm deliveries compared with term deliveries in women living near Superfund sites, whereas this was not the case for women living in non-Superfund site areas. Among the PAHs, DBA levels were significantly higher than BP or BbF, and DBA levels were inversely correlated with gestational age at delivery and birth weight. Bulky PAH-DNA adducts are more prevalent in placental tissue from individuals residing near Superfund sites. Expression of Ah receptor (AHR) and NF-E2-related factor 2 (NRF2) was decreased in preterm deliveries in subjects residing near Superfund sites. Unbiased metabolomics revealed alterations in pathways involved in pentose phosphate, inositol phosphate and starch and sucrose metabolism in preterm subjects in Superfund site areas. In summary, this is the first report showing an association between PAH levels, DNA adducts, and modulation of endogenous metabolic pathways with PTBs in subjects residing near Superfund sites, and further studies could lead to novel strategies in the understanding of the mechanisms by which PAHs contribute to PTBs in women.


Subject(s)
DNA Adducts/analysis , Environmental Pollution , Placenta/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Premature Birth/chemically induced , Female , Gene Expression Regulation , Humans , Infant, Newborn , Metabolome , Pregnancy , Risk Factors , Texas
4.
Neurosci Lett ; 664: 160-166, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29133177

ABSTRACT

Traumatic brain injury (TBI) is a serious public health concern, especially injuries from repetitive insults. The main objective of this study was to immunocytochemically examine morphological alterations in astrocytes and microglia in the hippocampus 48h following a single blast versus multiple blasts in adult C57BL/6 mice. The effects of ketamine and xylazine (KX), two common anesthetic agents used in TBI research, were also evaluated due to the confounding effect of anesthetics on injury outcome. Results showed a significant increase in hypertrophic microglia that was limited to the outer molecular layer of the dentate gyrus, but only in the absence of KX. Although the presence or absence of KX had no effect on astrocytes following a single blast, a significant decrease in astrocytic immunoreactivity was observed in the stratum lacunosum moleculare following multiple blasts in the absence of KX. The morphological changes in astrocytes and microglia reported in this study reveal region-specific differences in the absence of KX that could have significant implications for our interpretation of glial alterations in animal models of injury.


Subject(s)
Anesthetics/pharmacology , Brain Injuries, Traumatic/pathology , Hippocampus/pathology , Ketamine/pharmacology , Xylazine/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Blast Injuries/pathology , Disease Models, Animal , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...