Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Synth Biol ; 13(5): 1424-1433, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38684225

ABSTRACT

The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.


Subject(s)
Bayes Theorem , Optogenetics , Saccharomyces cerevisiae , Optogenetics/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Synthetic Biology/methods , Light , Transcription Factors/metabolism , Transcription Factors/genetics , Machine Learning , High-Throughput Screening Assays/methods
2.
bioRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659900

ABSTRACT

The human gut pathogen Clostridioides difficile displays extreme genetic variability and confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-species interactions impacting the growth and toxin production of diverse C. difficile strains in different nutrient environments. Although negative interactions impacting C. difficile are prevalent in environments promoting resource competition, they are sparse in an environment containing C. difficile-preferred carbohydrates. C. difficile strains display differences in interactions with Clostridium scindens and the ability to compete for proline. C. difficile toxin production displays substantial community-context dependent variation and does not trend with growth-mediated inter-species interactions. C. difficile shows substantial differences in transcriptional profiles in the presence of the closely related species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits massive alterations in metabolism and other cellular processes, consistent with their high metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production of diverse C. difficile strains across different nutrient environments and ameliorates the disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability and nutrient environments are major variables shaping gut microbiota interactions with C. difficile.

3.
bioRxiv ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-37986770

ABSTRACT

The arginine dihydrolase pathway (arc operon) present in a subset of diverse human gut species enables arginine catabolism. This specialized metabolic pathway can alter environmental pH and nitrogen availability, which in turn could shape gut microbiota inter-species interactions. By exploiting synthetic control of gene expression, we investigated the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles in vitro and in the murine gut. By stabilizing environmental pH, the arc operon reduced variability in community composition across different initial pH perturbations. The abundance of butyrate producing bacteria were altered in response to arc operon activity and butyrate production was enhanced in a physiologically relevant pH range. While the presence of the arc operon altered community dynamics, it did not impact production of short chain fatty acids. Dynamic computational modeling of pH-mediated interactions reveals the quantitative contribution of this mechanism to community assembly. In sum, our framework to quantify the contribution of molecular pathways and mechanism modalities on microbial community dynamics and functions could be applied more broadly.

4.
Cell Syst ; 14(12): 1044-1058.e13, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38091992

ABSTRACT

Microbial communities offer vast potential across numerous sectors but remain challenging to systematically control. We develop a two-stage approach to guide the taxonomic composition of synthetic microbiomes by precisely manipulating media components and initial species abundances. By combining high-throughput experiments and computational modeling, we demonstrate the ability to predict and design the diversity of a 10-member synthetic human gut community. We reveal that critical environmental factors governing monoculture growth can be leveraged to steer microbial communities to desired states. Furthermore, systematically varied initial abundances drive variation in community assembly and enable inference of pairwise inter-species interactions via a dynamic ecological model. These interactions are overall consistent with conditioned media experiments, demonstrating that specific perturbations to a high-richness community can provide rich information for building dynamic ecological models. This model is subsequently used to design low-richness communities that display low or high temporal taxonomic variability over an extended period. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Bacteria , Microbiota , Humans , Computer Simulation
5.
J Mol Evol ; 91(5): 730-744, 2023 10.
Article in English | MEDLINE | ID: mdl-37796316

ABSTRACT

Although our understanding of how life emerged on Earth from simple organic precursors is speculative, early precursors likely included amino acids. The polymerization of amino acids into peptides and interactions between peptides are of interest because peptides and proteins participate in complex interaction networks in extant biology. However, peptide reaction networks can be challenging to study because of the potential for multiple species and systems-level interactions between species. We developed and employed a computational network model to describe reactions between amino acids to form di-, tri-, and tetra-peptides. Our experiments were initiated with two of the simplest amino acids, glycine and alanine, mediated by trimetaphosphate-activation and drying to promote peptide bond formation. The parameter estimates for bond formation and hydrolysis reactions in the system were found to be poorly constrained due to a network property known as sloppiness. In a sloppy model, the behavior mostly depends on only a subset of parameter combinations, but there is no straightforward way to determine which parameters should be included or excluded. Despite our inability to determine the exact values of specific kinetic parameters, we could make reasonably accurate predictions of model behavior. In short, our modeling has highlighted challenges and opportunities toward understanding the behaviors of complex prebiotic chemical experiments.


Subject(s)
Amino Acids , Peptides , Peptides/chemistry , Amino Acids/chemistry , Kinetics , Hydrolysis , Polymerization
6.
PLoS Comput Biol ; 19(9): e1011436, 2023 09.
Article in English | MEDLINE | ID: mdl-37773951

ABSTRACT

Microbiomes interact dynamically with their environment to perform exploitable functions such as production of valuable metabolites and degradation of toxic metabolites for a wide range of applications in human health, agriculture, and environmental cleanup. Developing computational models to predict the key bacterial species and environmental factors to build and optimize such functions are crucial to accelerate microbial community engineering. However, there is an unknown web of interactions that determine the highly complex and dynamic behavior of these systems, which precludes the development of models based on known mechanisms. By contrast, entirely data-driven machine learning models can produce physically unrealistic predictions and often require significant amounts of experimental data to learn system behavior. We develop a physically-constrained recurrent neural network that preserves model flexibility but is constrained to produce physically consistent predictions and show that it can outperform existing machine learning methods in the prediction of certain experimentally measured species abundance and metabolite concentrations. Further, we present a closed-loop, Bayesian experimental design algorithm to guide data collection by selecting experimental conditions that simultaneously maximize information gain and target microbial community functions. Using a bioreactor case study, we demonstrate how the proposed framework can be used to efficiently navigate a large design space to identify optimal operating conditions. The proposed methodology offers a flexible machine learning approach specifically tailored to optimize microbiome target functions through the sequential design of informative experiments that seek to explore and exploit community functions.


Subject(s)
Microbiota , Research Design , Humans , Bayes Theorem , Neural Networks, Computer , Algorithms
7.
Nat Ecol Evol ; 7(1): 127-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36604549

ABSTRACT

Dietary fibre impacts the growth dynamics of human gut microbiota, yet we lack a detailed and quantitative understanding of how these nutrients shape microbial interaction networks and responses to perturbations. By building human gut communities coupled with computational modelling, we dissect the effects of fibres that vary in chemical complexity and each of their constituent sugars on community assembly and response to perturbations. We demonstrate that the degree of chemical complexity across different fibres limits microbial growth and the number of species that can utilize these nutrients. The prevalence of negative interspecies interactions is reduced in the presence of fibres compared with their constituent sugars. Carbohydrate chemical complexity enhances the reproducibility of community assembly and resistance of the community to invasion. We demonstrate that maximizing or minimizing carbohydrate competition between resident and invader species enhances resistance to invasion. In sum, the quantitative effects of carbohydrate chemical complexity on microbial interaction networks could be exploited to inform dietary and bacterial interventions to modulate community resistance to perturbations.


Subject(s)
Gastrointestinal Microbiome , Humans , Reproducibility of Results , Gastrointestinal Microbiome/physiology , Bacteria , Carbohydrates , Sugars
8.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187522

ABSTRACT

The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive spit transcription factors in the budding yeast, Saccharomyces cerevisiae . We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.

9.
Elife ; 112022 06 23.
Article in English | MEDLINE | ID: mdl-35736613

ABSTRACT

Predicting the dynamics and functions of microbiomes constructed from the bottom-up is a key challenge in exploiting them to our benefit. Current models based on ecological theory fail to capture complex community behaviors due to higher order interactions, do not scale well with increasing complexity and in considering multiple functions. We develop and apply a long short-term memory (LSTM) framework to advance our understanding of community assembly and health-relevant metabolite production using a synthetic human gut community. A mainstay of recurrent neural networks, the LSTM learns a high dimensional data-driven non-linear dynamical system model. We show that the LSTM model can outperform the widely used generalized Lotka-Volterra model based on ecological theory. We build methods to decipher microbe-microbe and microbe-metabolite interactions from an otherwise black-box model. These methods highlight that Actinobacteria, Firmicutes and Proteobacteria are significant drivers of metabolite production whereas Bacteroides shape community dynamics. We use the LSTM model to navigate a large multidimensional functional landscape to design communities with unique health-relevant metabolite profiles and temporal behaviors. In sum, the accuracy of the LSTM model can be exploited for experimental planning and to guide the design of synthetic microbiomes with target dynamic functions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria , Humans , Microbial Interactions , Neural Networks, Computer
10.
Environ Microbiol ; 23(11): 6676-6693, 2021 11.
Article in English | MEDLINE | ID: mdl-34390621

ABSTRACT

Leaf litter decomposition is a major carbon input to soil, making it a target for increasing soil carbon storage through microbiome engineering. We expand upon previous findings to show with multiple leaf litter types that microbial composition can drive variation in carbon flow from litter decomposition and specific microbial community features are associated with synonymous patterns of carbon flow among litter types. Although plant litter type selects for different decomposer communities, within a litter type, microbial composition drives variation in the quantity of dissolved organic carbon (DOC) measured at the end of the decomposition period. Bacterial richness was negatively correlated with DOC quantity, supporting our hypothesis that across multiple litter types there are common microbial traits linked to carbon flow patterns. Variation in DOC abundance (i.e. high versus low DOC) driven by microbial composition is tentatively due to differences in bacterial metabolism of labile compounds, rather than catabolism of non-labile substrates such as lignin. The temporal asynchrony of metabolic processes across litter types may be a substantial impediment to discovering more microbial features common to synonymous patterns of carbon flow among litters. Overall, our findings support the concept that carbon flow may be programmed by manipulating microbial community composition.


Subject(s)
Microbiota , Soil Microbiology , Carbon , Carbon Cycle , Ecosystem , Plant Leaves , Soil/chemistry
11.
Front Microbiol ; 12: 799014, 2021.
Article in English | MEDLINE | ID: mdl-35126334

ABSTRACT

Rapid microbial growth in the early phase of plant litter decomposition is viewed as an important component of soil organic matter (SOM) formation. However, the microbial taxa and chemical substrates that correlate with carbon storage are not well resolved. The complexity of microbial communities and diverse substrate chemistries that occur in natural soils make it difficult to identify links between community membership and decomposition processes in the soil environment. To identify potential relationships between microbes, soil organic matter, and their impact on carbon storage, we used sand microcosms to control for external environmental factors such as changes in temperature and moisture as well as the variability in available carbon that exist in soil cores. Using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) on microcosm samples from early phase litter decomposition, we found that protein- and tannin-like compounds exhibited the strongest correlation to dissolved organic carbon (DOC) concentration. Proteins correlated positively with DOC concentration, while tannins correlated negatively with DOC. Through random forest, neural network, and indicator species analyses, we identified 42 bacterial and 9 fungal taxa associated with DOC concentration. The majority of bacterial taxa (26 out of 42 taxa) belonged to the phylum Proteobacteria while all fungal taxa belonged to the phylum Ascomycota. Additionally, we identified significant connections between microorganisms and protein-like compounds and found that most taxa (12/14) correlated negatively with proteins indicating that microbial consumption of proteins is likely a significant driver of DOC concentration. This research links DOC concentration with microbial production and/or decomposition of specific metabolites to improve our understanding of microbial metabolism and carbon persistence.

12.
Front Microbiol ; 11: 542220, 2020.
Article in English | MEDLINE | ID: mdl-33240225

ABSTRACT

Discovering widespread microbial processes that drive unexpected variation in carbon cycling may improve modeling and management of soil carbon (Prescott, 2010; Wieder et al., 2015a, 2018). A first step is to identify community features linked to carbon cycle variation. We addressed this challenge using an epidemiological approach with 206 soil communities decomposing Ponderosa pine litter in 618 microcosms. Carbon flow from litter decomposition was measured over a 6-week incubation. Cumulative CO2 from microbial respiration varied two-fold among microcosms and dissolved organic carbon (DOC) from litter decomposition varied five-fold, demonstrating large functional variation despite constant environmental conditions where strong selection is expected. To investigate microbial features driving DOC concentration, two microbial community cohorts were delineated as "high" and "low" DOC. For each cohort, communities from the original soils and from the final microcosm communities after the 6-week incubation with litter were taxonomically profiled. A logistic model including total biomass, fungal richness, and bacterial richness measured in the original soils or in the final microcosm communities predicted the DOC cohort with 72 (P < 0.05) and 80 (P < 0.001) percent accuracy, respectively. The strongest predictors of the DOC cohort were biomass and either fungal richness (in the original soils) or bacterial richness (in the final microcosm communities). Successful forecasting of functional patterns after lengthy community succession in a new environment reveals strong historical contingencies. Forecasting future community function is a key advance beyond correlation of functional variance with end-state community features. The importance of taxon richness-the same feature linked to carbon fate in gut microbiome studies-underscores the need for increased understanding of biotic mechanisms that can shape richness in microbial communities independent of physicochemical conditions.

13.
FEMS Microbiol Ecol ; 96(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32627825

ABSTRACT

Discovering widespread microbial processes that create variation in soil carbon (C) cycling within ecosystems may improve soil C modeling. Toward this end, we screened 206 soil communities decomposing plant litter in a common garden microcosm environment and examined features linked to divergent patterns of C flow. C flow was measured as carbon dioxide (CO2) and dissolved organic carbon (DOC) from 44-days of litter decomposition. Two large groups of microbial communities representing 'high' and 'low' DOC phenotypes from original soil and 44-day microcosm samples were down-selected for fungal and bacterial profiling. Metatranscriptomes were also sequenced from a smaller subset of communities in each group. The two groups exhibited differences in average rate of CO2 production, demonstrating that the divergent patterns of C flow arose from innate functional constraints on C metabolism, not a time-dependent artefact. To infer functional constraints, we identified features - traits at the organism, pathway or gene level - linked to the high and low DOC phenotypes using RNA-Seq approaches and machine learning approaches. Substrate use differed across the high and low DOC phenotypes. Additional features suggested that divergent patterns of C flow may be driven in part by differences in organism interactions that affect DOC abundance directly or indirectly by controlling community structure.


Subject(s)
Microbiota , Soil , Bacteria/genetics , Carbon Dioxide , Plants , Soil Microbiology
14.
PLoS One ; 14(7): e0215502, 2019.
Article in English | MEDLINE | ID: mdl-31260460

ABSTRACT

Microbial communities are ubiquitous and often influence macroscopic properties of the ecosystems they inhabit. However, deciphering the functional relationship between specific microbes and ecosystem properties is an ongoing challenge owing to the complexity of the communities. This challenge can be addressed, in part, by integrating the advances in DNA sequencing technology with computational approaches like machine learning. Although machine learning techniques have been applied to microbiome data, use of these techniques remains rare, and user-friendly platforms to implement such techniques are not widely available. We developed a tool that implements neural network and random forest models to perform regression and feature selection tasks on microbiome data. In this study, we applied the tool to analyze soil microbiome (16S rRNA gene profiles) and dissolved organic carbon (DOC) data from a 44-day plant litter decomposition experiment. The microbiome data includes 1709 total bacterial operational taxonomic units (OTU) from 300+ microcosms. Regression analysis of predicted and actual DOC for a held-out test set of 51 samples yield Pearson's correlation coefficients of.636 and.676 for neural network and random forest approaches, respectively. Important taxa identified by the machine learning techniques are compared to results from a standard tool (indicator species analysis) widely used by microbial ecologists. Of 1709 bacterial taxa, indicator species analysis identified 285 taxa as significant determinants of DOC concentration. Of the top 285 ranked features determined by machine learning methods, a subset of 86 taxa are common to all feature selection techniques. Using this subset of features, prediction results for random permutations of the data set are at least equally accurate compared to predictions determined using the entire feature set. Our results suggest that integration of multiple methods can aid identification of a robust subset of taxa within complex communities that may drive specific functional outcomes of interest.


Subject(s)
Bacteria , Carbon/metabolism , Machine Learning , Microbiota/physiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...