Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
J Virol Methods ; 327: 114950, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735398

ABSTRACT

The major citrus species include several economically important fruits, such as orange, mandarin, lemon, limes, grapefruit and pomelos. Since the 1980 s, total production and consumption of citrus has grown strongly with the current annual worldwide production at over 105 million tonnes. New Zealand's citrus exports, for instance, had an estimated worth of NZ$ 11.6 million (approx. US$ 7 million) in 2020. Citrus plants are prone to viral diseases, which can lead to substantial economic losses. In New Zealand, the citrus Import Health Standard (IHS) has identified 22 viruses and viroids that are subject to regulation and requires citrus nursery stock to be free of these pathogens. As such, there is a need for reliable, sensitive, and rapid detection methods to screen for these viruses and viroids during post entry quarantine. In this study, we developed TaqMan RT-qPCR assays for the detection of nine of these regulated viruses and viroids, namely citrus leaf rugose virus (CiLRV), citrus leprosis virus C (CiLV-C), citrus leprosis virus C2 (CiLV-C2), citrus leprosis virus N (CiLV-N), citrus psorosis virus (CPsV), citrus yellow mosaic virus (CYMV), citrus bent leaf viroid (CBLVd), citrus viroid V (CVd-V), and citrus viroid VI (CVd-VI). These assays have been validated and found to be highly sensitive, specific, and reliable. The implementation of these assays will facilitate the safe importation of citrus nursery stock, thus safeguarding the country's horticultural and economic interests.

2.
Circulation ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660786

ABSTRACT

BACKGROUND: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS: The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS: Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS: Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.

3.
Plant Dis ; : PDIS06231227RE, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38301219

ABSTRACT

Plants of the genus Lavandula are thought to be rarely infected by viruses. To date, only alfalfa mosaic virus, cucumber mosaic virus, tobacco mosaic virus, and tomato spotted wilt virus have been reported in this host. In this study, we identified for the first time raspberry ringspot virus (RpRSV) and phlox virus M (PhlVM) in lavender using herbaceous indexing, enzyme-linked immunosorbent assay, and high-throughput sequencing. Nearly complete genome sequences for both viruses were determined. Phylogenetic and serological characterizations suggest that the obtained RpRSV isolate is a raspberry strain. A preliminary survey of 166 samples indicated RpRSV was spread only in the lavender cultivar 'Grosso', while PhlVM was detected in multiple lavender cultivars. Although RpRSV raspberry strain may have spread throughout Auckland and nearby areas in New Zealand, it is very likely restricted to the genus Lavandula or even to the cultivar 'Grosso' due to the absence or limited occurrence of the nematode vector. Interestingly, all infected lavender plants, regardless of their infection status (by RpRSV, PhlVM, or both) were asymptomatic. RpRSV is an important virus that infects horticultural crops including grapevine, cherry, berry fruits, and rose. It remains on the list of regulated pests in New Zealand. RpRSV testing is mandatory for imported Fragaria, Prunus, Ribes, Rosa, Rubus, and Vitis nursery stock and seeds for sowing, while this is not required for Lavandula importation. Our study revealed that lavender could play a role not only as a reservoir but also as an uncontrolled import pathway of viruses that pose a threat to New Zealand's primary industries.

4.
J Assist Reprod Genet ; 41(2): 297-309, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38236552

ABSTRACT

PURPOSE: Intracytoplasmic sperm injection (ICSI) imparts physical stress on the oolemma of the oocyte and remains among the most technically demanding skills to master, with success rates related to experience and expertise. ICSI is also time-consuming and requires workflow management in the laboratory. This study presents a device designed to reduce the pressure on the oocyte during injection and investigates if this improves embryo development in a porcine model. The impact of this device on laboratory workflow was also assessed. METHODS: Porcine oocytes were matured in vitro and injected with porcine sperm by conventional ICSI (C-ICSI) or with microICSI, an ICSI dish that supports up to 20 oocytes housed individually in microwells created through microfabrication. Data collected included set-up time, time to align the polar body, time to perform the injection, the number of hand adjustments between controllers, and degree of invagination at injection. Developmental parameters measured included cleavage and day 6 blastocyst rates. Blastocysts were differentially stained to assess cell numbers of the inner cell mass and trophectoderm. A pilot study with human donated MII oocytes injected with beads was also performed. RESULTS: A significant increase in porcine blastocyst rate for microICSI compared to C-ICSI was observed, while cleavage rates and blastocyst cell numbers were comparable between treatments. Procedural efficiency of microinjection was significantly improved with microICSI compared to C-ICSI in both species. CONCLUSION: The microICSI device demonstrated significant developmental and procedural benefits for porcine ICSI. A pilot study suggests human ICSI should benefit equally.


Subject(s)
Semen , Sperm Injections, Intracytoplasmic , Humans , Male , Animals , Swine , Microinjections , Pilot Projects , Oocytes , Embryonic Development , Blastocyst
5.
FASEB J ; 38(2): e23404, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38197290

ABSTRACT

The induction of acute endoplasmic reticulum (ER) stress damages the electron transport chain (ETC) in cardiac mitochondria. Activation of mitochondria-localized calpain 1 (CPN1) and calpain 2 (CPN2) impairs the ETC in pathological conditions, including aging and ischemia-reperfusion in settings where ER stress is increased. We asked if the activation of calpains causes the damage to the ETC during ER stress. Control littermate and CPNS1 (calpain small regulatory subunit 1) deletion mice were used in the current study. CPNS1 is an essential subunit required to maintain CPN1 and CPN2 activities, and deletion of CPNS1 prevents their activation. Tunicamycin (TUNI, 0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 72 h of TUNI treatment. ER stress was increased in both control littermate and CPNS1 deletion mice with TUNI treatment. The TUNI treatment activated both cytosolic and mitochondrial CPN1 and 2 (CPN1/2) in control but not in CPNS1 deletion mice. TUNI treatment led to decreased oxidative phosphorylation and complex I activity in control but not in CPNS1 deletion mice compared to vehicle. The contents of complex I subunits, including NDUFV2 and ND5, were decreased in control but not in CPNS1 deletion mice. TUNI treatment also led to decreased oxidation through cytochrome oxidase (COX) only in control mice. Proteomic study showed that subunit 2 of COX was decreased in control but not in CPNS1 deletion mice. Our results provide a direct link between activation of CPN1/2 and complex I and COX damage during acute ER stress.


Subject(s)
Calpain , Proteomics , Animals , Mice , Mice, Inbred C57BL , Calpain/genetics , Electron Transport , Electron Transport Complex I , Electron Transport Complex IV , Endoplasmic Reticulum Stress , Mitochondria, Heart
6.
Plant Dis ; 108(2): 291-295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37755419

ABSTRACT

Tomato (Solanum lycopersicum L., family Solanaceae) represents one of the most economically valuable horticultural crops worldwide. Tomato production is affected by numerous emerging plant viruses. We identified, for the first time in New Zealand (NZ), Pepino mosaic virus (PepMV) in greenhouse grown tomato crops using a combination of methods from electron microscopy and herbaceous indexing to RT-qPCR and high-throughput sequencing. Phylogenetic and genomic analysis of a near-complete PepMV genome determined that the detected strain belonged to the mild form of the CH2 lineage of the virus. Subsequently, a delimiting survey of PepMV was conducted, and PepMV was detected at four additional locations. PCR-derived sequences obtained from samples collected from different greenhouses and from herbaceous indicator plants were identical to the original sequence. Since PepMV has never been reported in NZ before, seed pathways are speculated to be the most likely source of entry into the country.


Subject(s)
Potexvirus , Solanum lycopersicum , Phylogeny , New Zealand , Plant Diseases
7.
Spine J ; 24(1): 132-136, 2024 01.
Article in English | MEDLINE | ID: mdl-37690479

ABSTRACT

BACKGROUND CONTEXT: Circumferential lumbar fusions (cLFs) are becoming more common with increasing and more minimally invasive anterior access techniques. Staging allows reassessment of indirect decompression and alignment prior to the posterior approach, and optimization of OR time management. Safety of staging has been well documented in deformity surgery but has yet to be delineated in less extensive, degenerative cLFs. PURPOSE: The purpose of this study is to compare perioperative complications and outcomes between staged versus single-anesthetic circumferential fusions in the lumbar spine. STUDY DESIGN: Propensity-matched comparative observational cohort. PATIENT SAMPLE: Patients who underwent cLFs for lumbar degenerative disease. OUTCOME MEASURES: In-hospital, 30-day, 90-day, and 1-year complications. METHODS: From 123 patients undergoing single-anesthetic and 154 patients undergoing staged cLF, 95 patients in each group were propensity-matched based on age, sex, BMI, ASA score, smoking, revision, and number of levels. We compared perioperative, 30-day, 90-day, and 1-year complications between the two cohorts. RESULTS: Mean days between stages was 1.58. Single-anesthetic cLF had longer total surgery time (304 vs 240 minutes, p<.001) but shorter total PACU total time (133 vs 196 minutes, p<.001). However, there was no difference in total anesthesia time (368 vs 374 minutes, p=.661) and total EBL (357 vs 320cc, p=.313). Intraoperative complications were nine incidental durotomies in the single-anesthetic and one iliac vein injury in the staged group (9% vs 1%, p=.018). There was no difference of in-hospital (38 vs 31, p=.291), 30-day (16 vs 23, p=.281), 90-day (10 vs 15, p=.391), 1-year complications (9 vs 12, p=.644), and overall cumulative 1-year complications (54 vs 56, p=.883) between the two cohorts. CONCLUSIONS: There is a decrease in total surgical time and intraoperative complications during staged compared with single-anesthetic cLF with no difference in in-hospital, 30-day, 90-day, and 1-year complications between approaches.


Subject(s)
Anesthetics , Spinal Fusion , Humans , Operative Time , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Lumbar Vertebrae/surgery , Intraoperative Complications/epidemiology , Intraoperative Complications/etiology , Spinal Fusion/adverse effects , Spinal Fusion/methods , Cohort Studies , Retrospective Studies , Treatment Outcome
8.
Am J Physiol Heart Circ Physiol ; 326(2): H385-H395, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38099846

ABSTRACT

Mitochondrial function in aged hearts is impaired, and studies of isolated mitochondria are commonly used to assess their function. The two populations of cardiac mitochondria, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), are affected by aging. However, the yield of these mitochondria, particularly SSM, is limited in the mouse heart because of the smaller heart size. To address this issue, the authors developed a method to isolate a mixed population (MIX) of SSM and IFM mitochondria from a single mouse heart. The aim of the study was to compare the mitochondrial function between SSM, IFM, and the MIX population from young and aged mouse hearts. The MIX population had a higher yield of total protein and citrate synthase activity from both young and aged hearts compared with the individual yields of SSM or IFM. Oxidative phosphorylation (OXPHOS) decreased in aged SSM and IFM compared with young SSM and IFM, as well as in the MIX population isolated from aged hearts compared with young hearts, when using complex I or IV substrates. Furthermore, aging barely affected the sensitivity to mitochondrial permeability transition pore (MPTP) opening in SSM, whereas the sensitivity was increased in IFM isolated from aged hearts and in the MIX population from aged hearts compared with the corresponding populations isolated from young hearts. These results suggest that mitochondrial dysfunction exists in aged hearts and the isolation of a MIX population of mitochondria from the mouse heart is a potential approach to studying mitochondrial function in the mouse heart.NEW & NOTEWORTHY We developed two methods to isolate mitochondria from a single mouse heart. We compared mitochondrial function in young and aged mice using mitochondria isolated with different methods. Both methods can be successfully used to isolate cardiac mitochondria from single mouse hearts. Our results provide the flexibility to isolate mitochondria from a single mouse heart based on the purpose of the study.


Subject(s)
Heart , Mitochondrial Diseases , Mice , Animals , Mitochondria, Heart/metabolism , Oxidative Phosphorylation , Aging , Mitochondrial Diseases/metabolism
9.
Plant Dis ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115569

ABSTRACT

Streptocarpus (Cape primrose, family Gesneriaceae) is a genus of plants native to Southern Africa commonly grown indoors for their foliage and trumpet-shaped flowers. In Aoteroa New Zealand (NZ) to date, no viruses have been reported to infect plants of the Gesneriaceae (Veerakone et al. 2015). In September 2022, a plant of Streptocarpus hybrid exhibiting necrotic rings was observed in a hobbyist's greenhouse in Auckland, NZ. High-Throughput Sequencing (HTS) using MinIONTM (Oxford Nanopore Technologies), was applied as a first screen (Liefting et al. 2021). Phylogenetic analysis was performed using Geneious Prime 2021 (Biomatters Ltd, NZ). A BLASTn search with 622,847 obtained reads resulted in 3,260 and 4,340 matches to the sequences of Streptocarpus flower break tobamovirus (SFBV) and Impatiens necrotic spot orthotospovirus (INSV), respectively. A near-complete (98.5%) genome sequence of SFBV was obtained (GenBank accession No. OQ970154), which shared 99.52% nucleotide identity to a SFBV type isolate from Germany (GenBank accession No. NC_008365). A phylogenetic tree was also generated (e-Xtra). To confirm the presence of both viruses, leaf tissue was rub inoculated onto herbaceous indicator plants as described by Tang et al. (2013). Chenopodium amaranticolor and C. quinoa plants developed local lesions while Nicotiana occidentalis plants showed local necrosis followed by systemic leaf puckering by 14 days post inoculation (dpi). Nicotiana benthamiana and N. clevelandii plants showed systemic chlorosis but N. tabacum plants did not exhibit any symptoms by 28 dpi. Samples from indicators and Streptocarpus were tested by RT-PCR (SFBV) or RT-qPCR (INSV), using in-house designed primers: SFBV-forward (5'-GTCATCAGCCGGAGAGGTTC-3'), SFBV-reverse (5'-AGGGCGAGTCTCTTCCTCTG-3'), INSV-forward (5'-CAATCAGAGGGTGACTTGGAA-3'), INSV-reverse (5'-GACTTTCCGAAGACTTGATGC-3') and INSV-probe (5'-CCATTGTCCTTTATCATTCCAACAAG-3'). RT-PCR products (across MP and CP regions) of the expected size (357 bp) were amplified from the Streptocarpus sample and symptomatic indicators. All amplicons were sequenced in both directions and found to be identical to the obtained HTS sequence. The presence of INSV was confirmed in all Streptocarpus and inoculated indicators except N. tabacum by INSV-specific RT-qPCR. A further 77 Streptocarpus plants were collected from a greenhouse in Auckland that holds a collection of multiple Streptocarpus cultivars from across NZ and overseas. Twenty-five plants, either displaying flower colour-break (only one plant) or asymptomatic (24 plants), tested positive for SFBV by RT-PCR. All amplicons were sequenced and found to be identical. SFBV was first described from naturally infected Streptocarpus plants in 1995 in the Netherlands (Verhoeven et al. 1995), and then in Germany (Heinze et al. 2006) and the United States (Pappu & Druffel 2007). While INSV has been found in NZ in several plant genera (Veerakone et al., 2015), to our knowledge, this is the first report of SFBV in NZ. SFBV was thought to be associated with colour breaking of Streptocarpus flowers (Verhoeven et al. 1995) but the virus was detected in asymptomatic Streptocarpus plants in this study and in California (Pappu & Druffel 2007). Given SFBV-infected plants were purchased from several sources, and leaf cuttings for propagation are shared among hobbyists, SFBV is likely to have spread throughout NZ. How this will affect production is unclear at this stage.

10.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220204, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37807684

ABSTRACT

As part of the CarbonWatch-NZ research programme, air samples were collected at 28 sites around Auckland, New Zealand, to determine the atmospheric ratio (RCO) of excess (local enhancement over background) carbon monoxide to fossil CO2 (CO2ff). Sites were categorized into seven types (background, forest, industrial, suburban, urban, downwind and motorway) to observe RCO around Auckland. Motorway flasks observed RCO of 14 ± 1 ppb ppm-1 and were used to evaluate traffic RCO. The similarity between suburban (14 ± 1 ppb ppm-1) and traffic RCO suggests that traffic dominates suburban CO2ff emissions during daytime hours, the period of flask collection. The lower urban RCO (11 ± 1 ppb ppm-1) suggests that urban CO2ff emissions are comprised of more than just traffic, with contributions from residential, commercial and industrial sources, all with a lower RCO than traffic. Finally, the downwind sites were believed to best represent RCO for Auckland City overall (11 ± 1 ppb ppm-1). We demonstrate that the initial discrepancy between the downwind RCO and Auckland's estimated daytime inventory RCO (15 ppb ppm-1) can be attributed to an overestimation in inventory traffic CO emissions. After revision based on our observed motorway RCO, the revised inventory RCO (12 ppb ppm-1) is consistent with our observations. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

11.
PLoS Pathog ; 19(10): e1011671, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37824437
12.
Mech Ageing Dev ; 215: 111859, 2023 10.
Article in English | MEDLINE | ID: mdl-37661065

ABSTRACT

Aging-related cardiovascular disease is influenced by multiple factors, with oxidative stress being a key contributor. Aging-induced endoplasmic reticulum (ER) stress exacerbates oxidative stress by impairing mitochondrial function. Furthermore, a decline in antioxidants, including peroxiredoxins (PRDXs), augments the oxidative stress during aging. To explore if ER stress leads to PRDX degradation during aging, young adult (3 mo.) and aged (24 mo.) male mice were studied. Treatment with 4-phenylbutyrate (4-PBA) was used to alleviate ER stress in young adult and aged mice. Aged hearts showed elevated oxidative stress levels compared to young hearts. However, treatment with 4-PBA to attenuate ER stress reduced oxidative stress in aged hearts, indicating that ER stress contributes to increased oxidative stress in aging. Moreover, aging resulted in reduced levels of peroxiredoxin 3 (PRDX3) in mitochondria and peroxiredoxin 4 (PRDX4) in myocardium. While 4-PBA treatment improved PRDX3 content in aged hearts, it did not restore PRDX4 content in aged mice. These findings suggest that ER stress not only leads to mitochondrial dysfunction and increased oxidant stress but also impairs a vital antioxidant defense through decreased PRDX3 content. Additionally, the results suggest that PRDX4 may contribute an upstream role in inducing ER stress during aging.


Subject(s)
Heart , Peroxiredoxins , Mice , Male , Animals , Peroxiredoxins/metabolism , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Endoplasmic Reticulum Stress
13.
Plant Dis ; 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488982

ABSTRACT

Fig (Ficus carica) has been cultivated since ancient times, and is now grown worldwide, both for its fruit and as an ornamental plant. Several viruses and viroids are associated with Fig mosaic disease (FMD), a disease complex occurring worldwide (Preising et al. 2021). Fig mosaic virus (FMV), fig leaf mottle-associated virus 1 (FLMaV-1), fig mild mottle-associated virus (FMMaV), and fig badnavirus 1 (FBV-1) are known to infect fig in New Zealand (Minafra et al. 2012; Veerakone et al. 2015). In December 2020, leaf samples from a fig tree growing on the roadside at St Heliers, Auckland, showing dieback with foliar chlorotic mosaic symptoms, was received for virus testing. Total nucleic acid was extracted from the symptomatic leaves using a KingFisher™ mL Purification System (Thermofisher Scientific, Waltham, MA) with an InviMag Plant DNA Mini Kit (Invitek Molecular GmbH, Germany) and subjected to high-throughput sequencing on an Oxford Nanopore Technologies MinION device using the method described in Liefting et al. 2021. All sequence analysis was performed using Geneious Prime 2021.1.1 (https://www.geneious.com). A total of 355,858 reads that passed quality check were subjected to BLASTn search against the NCBI nt database as described in Liefting et al. 2021. The following viruses produced hits: FMV, FBV-1, FMMaV and a fig closterovirus. The presence of FMV, FBV-1 and FMMaV were confirmed by species specific RT-PCRs. To identify the closterovirus, reads were mapped to closteroviruses reported in fig including the recently identified tentative species fig virus A (FiVA; GenBank accession no MN817232) and fig virus B (FiVB; GenBank accession no. MN817233). Five viral contigs ranging from 939 to 2,340 nucleotides (nt) were obtained from mapping to FiVB. Subsequently, a 6.4 kb sequence (GenBank accession no. OQ968551) from the 3' region of the NZ isolate was amplified by overlapping RT-PCR using primers designed from the contig sequences. The sequence shared 79.5% nucleotide (nt) identity with FiVB The original sample and a further 25 symptomatic and 10 asymptomatic fig samples, collected from the Auckland area between 2016 and 2021, were tested using FiVB specific RT-PCR and Sanger sequencing using primers FiVB-F1 (5'-GAGGGAGAGATGTAGATGC-3') and FiVB-R2 (5'-TGTCGTCGATATCGTTGTGT-3'), designed to amplify a 725 nt fragment in the 70 kDa heat shock protein (HSP70) ORF. Products of the expected size were amplified from the original sample and three symptomatic samples and their sequences found to be identical. BLAST searches showed that the sequence (GenBank accession no. ON553403) shared 82.7% nt and 87.3% amino acid (aa) identity to an isolate of FiVB (GenBank accession no MN817233). These additional positive samples were collected from a small home nursery where the plants were propagated from cuttings and have been distributed locally, suggesting the virus is very likely to have a limited spread throughout the Auckland area. All three FiVB infected samples were also positive for FMV. However, the association of FiVB with FMD symptoms is unknown. FiVB was first identified from a latex sample exuded from a fig tree collected from Japan (Park et al. 2021) and is the only report of FiVB in the world to date. Although an identical sequence from Argentina, named fig closterovirus 1, was submitted to GenBank, the origin of this isolate is not known. To our knowledge, this is the first report of FiVB in New Zealand.

14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159366, 2023 10.
Article in English | MEDLINE | ID: mdl-37473835

ABSTRACT

The endoplasmic reticulum (ER) plays a key role in the regulation of protein folding, lipid synthesis, calcium homeostasis, and serves as a primary site of sphingolipid biosynthesis. ER stress (ER dysfunction) participates in the development of mitochondrial dysfunction during aging. Mitochondria are in close contact with the ER through shared mitochondria associated membranes (MAM). Alteration of sphingolipids contributes to mitochondria-driven cell injury. Cardiolipin is a phospholipid that is critical to maintain enzyme activity in the electron transport chain. The aim of the current study was to characterize the changes in sphingolipids and cardiolipin in ER, MAM, and mitochondria during the progression of aging in young (3 mo.), middle (18 mo.), and aged (24 mo.) C57Bl/6 mouse hearts. ER stress increased in hearts from 18 mo. mice and mice exhibited mitochondrial dysfunction by 24 mo. Hearts were pooled to isolate ER, MAM, and subsarcolemmal mitochondria (SSM). LC-MS/MS quantification of lipid content showed that aging increased ceramide content in ER and MAM. In addition, the contents of sphingomyelin and monohexosylceramides are also increased in the ER from aged mice. Aging increased the total cardiolipin content in the ER. Aging did not alter the total cardiolipin content in mitochondria or MAM yet altered the composition of cardiolipin with aging in line with increased oxidative stress compared to young mice. These results indicate that alteration of sphingolipids can contribute to the ER stress and mitochondrial dysfunction that occurs during aging.


Subject(s)
Aging , Endoplasmic Reticulum Stress , Mitochondria , Sphingolipids , Animals , Mice , Aging/pathology , Mitochondria/chemistry , Mitochondria/pathology , Cardiolipins/analysis , Ceramides/analysis , Endoplasmic Reticulum/chemistry , Sphingolipids/analysis , Sphingolipids/metabolism
15.
Article in English | MEDLINE | ID: mdl-37163417

ABSTRACT

INTRODUCTION: The personality traits of those who become orthopaedic surgeons may also lead to overwork, work-life balance issues, and burnout. Health and wellness practices of orthopaedic surgeons have not been widely explored. This study evaluated the personal health habits, wellness, and burnout of practicing orthopaedic surgeons in the United States. METHODS: An anonymous self-assessment survey was completed by 234 practicing orthopaedic surgeon alumni from two large residency programs. The survey assessed exercise habits according to Centers for Disease Control and Prevention recommendations, compliance with preventive medical care practices according to the United States Preventive Services Task Force, prioritization of occupational wellness strategies, and the presence of burnout via an adapted Maslach Burnout Inventory. Survey responders' mean age was 52 years, 88% were male, and 93% had a body mass index <30 kg/m2. Surgeons were stratified according to practice type, years in practice, and subspecialty. RESULTS: Among orthopaedic surgeons, compliance with aerobic and strength exercise recommendations was 31%. Surgeons in academic practice were significantly (P = 0.007) less compliant with exercise recommendations (18%) compared with private (34%) or employed (43%) practicing surgeons. Most (71%) had seen their primary care provider within 2 years and were up to date on age-appropriate health care screening including a cholesterol check within 5 years (79%), colonoscopy (89%), and mammogram (92%). Protecting time away from work for family/friends and finding meaning in work were the most important wellness strategies. The overall burnout rate was 15% and remained not significantly different (P > 0.3) regardless of years in practice, practice type, or subspecialty. CONCLUSION: This survey study identifies practicing orthopaedic surgeons' health habits and wellness strategies, including limited compliance with aerobic and strength exercise recommendations. Orthopaedic surgeons should be aware of areas of diminished personal wellness to improve quality of life and avoid burnout.


Subject(s)
Burnout, Professional , Orthopedic Surgeons , Surgeons , Humans , Male , United States , Middle Aged , Child, Preschool , Female , Quality of Life , Surveys and Questionnaires , Burnout, Professional/prevention & control
16.
Viruses ; 15(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36851632

ABSTRACT

To protect New Zealand's unique ecosystems and primary industries, imported plant materials must be constantly monitored at the border for high-threat pathogens. Techniques adopted for this purpose must be robust, accurate, rapid, and sufficiently agile to respond to new and emerging threats. Polymerase chain reaction (PCR), especially real-time PCR, remains an essential diagnostic tool but it is now being complemented by high-throughput sequencing using both Oxford Nanopore and Illumina technologies, allowing unbiased screening of whole populations. The demand for and value of Point-of-Use (PoU) technologies, which allow for in situ screening, are also increasing. Isothermal PoU molecular diagnostics based on recombinase polymerase amplification (RPA) and loop-mediated amplification (LAMP) do not require expensive equipment and can reach PCR-comparable levels of sensitivity. Recent advances in PoU technologies offer opportunities for increased specificity, accuracy, and sensitivities which makes them suitable for wider utilization by frontline or border staff. National and international activities and initiatives are adopted to improve both the plant virus biosecurity infrastructure and the integration, development, and harmonization of new virus diagnostic technologies.


Subject(s)
Biosecurity , Ecosystem , Humans , New Zealand , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction
17.
Int J Spine Surg ; 17(2): 250-257, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36754573

ABSTRACT

BACKGROUND: Sacroiliac joint fusion (SIJF) has been established as an effective treatment for sacroiliac joint dysfunction. However, failure necessitating revision has been reported in up to 30% of cases. Little is known regarding outcomes of revision SIJF. METHODS: We retrospectively reviewed all revision SIJF at a single academic center between 2017 and 2020. Revision surgery was performed using the principles of joint decortication, bone grafting, compression, and rigid internal fixation. Outcomes were assessed at 6 months and 1 year after surgery using the Oswestry Disability Index (ODI), Numeric Pain Rating Scale (NPRS), and Single Assessment Numeric Evaluation (SANE) scale. Fusion was assessed using computed tomography at 12 months postoperatively. RESULTS: Eighteen revision SIJFs in 13 patients were included. The mean age was 55.8 years (range 35-75). Mean body mass index was 27.9 (range 21.7-36.7). Sixty-two percent of the patients were women. The indications for revision were pseudarthrosis without fixation failure in 14 cases (77.8%), hardware failure (loosening) in 3 cases (16.7%), and continued pain after partial fusion in 1 case (5.6%). ODI and NPRS scores demonstrated significant statistical and clinical improvements at all timepoints. Mean (SD) ODI scores improved from 53.8 (19.9) preoperative to 37.5 (19.8) at 6 months and 32.9 (21.7) at 12 months. Improvement in ODI was found in 15 joints (83.3%), and the minimal clinically important difference (MCID) was achieved in 12 joints (66.7%). Mean (SD) NPRS scores improved from 6.5 (1.4) preoperative to 3.2 (2.8) at 6 months and 3.4 (2.6) at 12 months. Improvement in NPRS was also identified in 17 joints (94.4%), and 10 joints (55.6%) achieved MCID for NPRS. Mean (SD) SANE score was 72.0% (30.8) at 6 months and 70.0% (33.8) at 12 months. There were no radiographic lucencies, implant subsidence, or implant fractures at final follow-up. We identified an 88.9% fusion rate with definitive bridging bone across the sacroiliac joint. CONCLUSION: Utilizing a principles-based technique of joint decortication, compression, and rigid internal fixation, revision SIJF showed an improvement in patient-reported outcomes as well as high rate of fusion at 12 months. The most common indications for revision SIJF are symptomatic pseudarthrosis and implant loosening. This is the largest series of revision SIJF to date.

18.
Hum Reprod Update ; 29(3): 272-290, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36611003

ABSTRACT

BACKGROUND: Since the birth of the first baby using IVF technology in 1978, over 10 million children have been conceived via ART. Although most aspects of ARTs were developed in animal models, the introduction of these technologies into clinical practice was performed without comprehensive assessment of their long-term safety. The monitoring of these technologies over time has revealed differences in the physiology of babies produced using ARTs, yet due to the pathology of those presenting for treatment, it is challenging to separate the cause of infertility from the effect of treatments offered. The use of systematic review and meta-analysis to investigate the impacts of the predominant ART interventions used clinically in human populations on animals produced in healthy fertile populations offers an alternative approach to understanding the long-term safety of reproductive technologies. OBJECTIVE AND RATIONALE: This systematic review and meta-analysis aimed to examine the evidence available from animal studies on physiological outcomes in the offspring conceived after IVF, IVM or ICSI, compared to in vivo fertilization, and to provide an overview on the landscape of research in this area. SEARCH METHODS: PubMed, Embase and Commonwealth Agricultural Bureaux (CAB) Abstracts were searched for relevant studies published until 27 August 2021. Search terms relating to assisted reproductive technology, postnatal outcomes and mammalian animal models were used. Studies that compared postnatal outcomes between in vitro-conceived (IVF, ICSI or IVM) and in vivo-conceived mammalian animal models were included. In vivo conception included mating, artificial insemination, or either of these followed by embryo transfer to a recipient animal with or without in vitro culture. Outcomes included birth weight, gestation length, cardiovascular, metabolic and behavioural characteristics and lifespan. OUTCOMES: A total of 61 studies in five different species (bovine, equine, murine, ovine and non-human primate) met the inclusion criteria. The bovine model was the most frequently used in IVM studies (32/40), while the murine model was mostly used in IVF (17/20) and ICSI (6/8) investigations. Despite considerable heterogeneity, these studies suggest that the use of IVF or maturation results in offspring with higher birthweights and a longer length of gestation, with most of this evidence coming from studies in cattle. These techniques may also impair glucose and lipid metabolism in male mice. The findings on cardiovascular outcomes and behaviour outcomes were inconsistent across studies. WIDER IMPLICATIONS: Conception via in vitro or in vivo means appears to have an influence on measurable outcomes of offspring physiology, manifesting differently across the species studied. Importantly, it can be noted that these measurable differences are noticeable in healthy, fertile animal populations. Thus, common ART interventions may have long-term consequences for those conceived through these techniques, regardless of the pathology underpinning diagnosed infertility. However, due to heterogeneous methods, results and measured outcomes, highlighted in this review, it is difficult to draw firm conclusions. Optimizing animal and human studies that investigate the safety of new reproductive technologies will provide insight into safeguarding the introduction of novel interventions into the clinical setting. Cautiously prescribing the use of ARTs clinically may also be considered to reduce the chance of promoting adverse outcomes in children conceived before long-term safety is confidently documented.


Subject(s)
Fertilization in Vitro , Infertility , Animals , Male , Humans , Cattle , Horses , Sheep , Mice , Fertilization in Vitro/methods , Sperm Injections, Intracytoplasmic/methods , Reproductive Techniques, Assisted , Fertilization , Infertility/therapy , Proteins , Mammals
19.
Sci Rep ; 13(1): 562, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631601

ABSTRACT

Polydimethylsiloxane (PDMS) has been the material of choice for microfluidic applications in cell biology for many years, with recent advances encompassing nano-scaffolds and surface modifications to enhance cell-surface interactions at nano-scale. However, PDMS has not previously been amenable to applications which require complex geometries in three dimensions for cell culture device fabrication in the absence of additional components. Further, PDMS microfluidic devices have limited capacity for cell retrieval following culture without severely compromising cell health. This study presents a designed and entirely 3D-printed microfluidic chip (8.8 mm × 8.2 mm × 3.6 mm) using two-photon polymerization (2PP). The 'nest' chip is composed of ten channels that deliver sub-microliter volume flowrates (to ~ 600 nL/min per channel) to 10 individual retrievable cell sample 'cradles' that interlock with the nest to create the microfluidic device. Computational fluid dynamics modelling predicted medium flow in the device, which was accurately validated by real-time microbead tracking. Functional capability of the device was assessed, and demonstrated the capability to deliver culture medium, dyes, and biological molecules to support cell growth, staining and cell phenotype changes, respectively. Therefore, 2PP 3D-printing provides the precision needed for nanoliter fluidic devices constructed from multiple interlocking parts for cell culture application.


Subject(s)
Cell Culture Techniques , Microfluidics , Polymerization , Lab-On-A-Chip Devices , Perfusion
20.
J Gen Virol ; 103(10)2022 10.
Article in English | MEDLINE | ID: mdl-36205485

ABSTRACT

In this study 163 complete whole-genome sequences of the emerging pathogen grapevine red blotch virus (GRBV; genus Grablovirus, family Geminiviridae) were used to reconstruct phylogenies using Bayesian analyses on time-tipped (heterochronous) data. Using different combinations of priors, Bayes factors identified heterochronous datasets (3×200 million chains) generated from strict clock and exponential tree priors as being the most robust. Substitution rates of 3.2×10-5 subsitutions per site per year (95% HPD 4.3-2.1×10-5) across the whole of the GRBV genome were estimated, suggesting ancestral GRBV diverged from ancestral wild Vitis latent virus 1 around 9 000 years ago, well before the first documented arrival of Vitis vinifera in North America. Whole-genome analysis of GRBV isolates in a single infected field-grown grapevine across 12 years identified 12 single nucleotide polymorphisms none of which were fixed substitutions: an observation not discordant with the in silico estimate. The substitution rate estimated here is lower than those estimated for other geminiviruses and is the first for a woody-host-infecting geminivirus.


Subject(s)
Geminiviridae , Vitis , Bayes Theorem , Geminiviridae/genetics , Phylogeny , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...