Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
Sci Rep ; 13(1): 10718, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37400515

ABSTRACT

p27KIP1 (cyclin-dependent kinase inhibitor 1B, p27) is a member of the CIP/KIP family of CDK (cyclin dependent kinase) regulators that inhibit cell cycle CDKs. p27 phosphorylation by CDK1/2, signals its recruitment to the SCFSKP2 (S-phase kinase associated protein 1 (SKP1)-cullin-SKP2) E3 ubiquitin ligase complex for proteasomal degradation. The nature of p27 binding to SKP2 and CKS1 was revealed by the SKP1-SKP2-CKS1-p27 phosphopeptide crystal structure. Subsequently, a model for the hexameric CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex was proposed by overlaying an independently determined CDK2-cyclin A-p27 structure. Here we describe the experimentally determined structure of the isolated CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex at 3.4 Å global resolution using cryogenic electron microscopy. This structure supports previous analysis in which p27 was found to be structurally dynamic, transitioning from disordered to nascent secondary structure on target binding. We employed 3D variability analysis to further explore the conformational space of the hexameric complex and uncovered a previously unidentified hinge motion centred on CKS1. This flexibility gives rise to open and closed conformations of the hexameric complex that we propose may contribute to p27 regulation by facilitating recognition with SCFSKP2. This 3D variability analysis further informed particle subtraction and local refinement approaches to enhance the local resolution of the complex.


Subject(s)
CDC2-CDC28 Kinases , S-Phase Kinase-Associated Proteins , S-Phase Kinase-Associated Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin A/metabolism , Cryoelectron Microscopy , Cyclin-Dependent Kinases/metabolism
3.
Small ; 19(22): e2206267, 2023 06.
Article in English | MEDLINE | ID: mdl-36866488

ABSTRACT

Hybrid vesicles consisting of phospholipids and block-copolymers are increasingly finding applications in science and technology. Herein, small angle X-ray scattering (SAXS) and cryo-electron tomography (cryo-ET) are used to obtain detailed structural information about hybrid vesicles with different ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(1,2-butadiene-block-ethylene oxide) (PBd22 -PEO14 , Ms  = 1800 g mol-1 ). Using single particle analysis (SPA) the authors are able to further interpret the information gained from SAXS and cryo-ET experiments, showing that increasing PBd22 -PEO14 mole fraction increases the membrane thickness from 52 Å for a pure lipid system to 97 Å for pure PBd22 -PEO14 vesicles. Two vesicle populations with different membrane thicknesses in hybrid vesicle samples are found. As these lipids and polymers are reported to homogeneously mix, bistability is inferred between weak and strong interdigitation regimes of PBd22 -PEO14 within the hybrid membranes. It is hypothesized that membranes of intermediate structure are not energetically favorable. Therefore, each vesicle exists in one of these two membrane structures, which are assumed to have comparable free energies. The authors conclude that, by combining biophysical methods, accurate determination of the influence of composition on the structural properties of hybrid membranes is achieved, revealing that two distinct membranes structures can coexist in homogeneously mixed lipid-polymer hybrid vesicles.


Subject(s)
Lipid Bilayers , Polymers , Polymers/chemistry , Lipid Bilayers/chemistry , Scattering, Small Angle , X-Rays , X-Ray Diffraction , Microscopy, Electron
5.
Faraday Discuss ; 240(0): 18-32, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36172917

ABSTRACT

Cryo-electron microscopy (cryoEM) has been transformed over the last decade, with continual new hardware and software tools coming online, pushing the boundaries of what is possible and the nature and complexity of projects that can be undertaken. Here we discuss some recent trends and new tools which are creating opportunities to make more effective use of the resources available within facilities (both staff and equipment). We present approaches for the stratification of projects based on risk and known information about the projects, and the impacts this might have on the allocation of microscope time. We show that allocating different resources (microscope time) based on this information can lead to a significant increase in 'successful' use of the microscope, and reduce lead time by enabling projects to 'fail faster'. This model results in more efficient and sustainable cryoEM facility operation.


Subject(s)
Software , Humans , Cryoelectron Microscopy/methods
6.
Front Mol Biosci ; 9: 945772, 2022.
Article in English | MEDLINE | ID: mdl-35992264

ABSTRACT

Advances in single particle cryo-EM data collection and processing have seen a significant rise in its use. However, the influences of the environment generated through grid preparation, by for example interactions of proteins with the air-water interface are poorly understood and can be a major hurdle in structure determination by cryo-EM. Initial interactions of proteins with the air-water interface occur quickly and proteins can adopt preferred orientation or partially unfold within hundreds of milliseconds. It has also been shown previously that thin-film layers create hydroxyl radicals. To investigate the potential this might have in cryo-EM sample preparation, we studied two proteins, HSPD1, and beta-galactosidase, and show that cysteine residues are modified in a time-dependent manner. In the case of both HSPD1 and beta-galactosidase, this putative oxidation is linked to partial protein unfolding, as well as more subtle structural changes. We show these modifications can be alleviated through increasing the speed of grid preparation, the addition of DTT, or by sequestering away from the AWI using continuous support films. We speculate that the modification is oxidation by reactive oxygen species which are formed and act at the air-water interface. Finally, we show grid preparation on a millisecond timescale outruns cysteine modification, showing that the reaction timescale is in the range of 100s to 1,000s milliseconds and offering an alternative approach to prevent spontaneous cysteine modification and its consequences during cryo-EM grid preparation.

7.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445134

ABSTRACT

Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.


Subject(s)
Antiviral Agents/pharmacology , Coxsackievirus Infections/diet therapy , Enterovirus C, Human/drug effects , N-Acetylneuraminic Acid/pharmacology , Conjunctivitis, Acute Hemorrhagic/drug therapy , Conjunctivitis, Acute Hemorrhagic/metabolism , Conjunctivitis, Acute Hemorrhagic/virology , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Glucose/metabolism , Humans , Lectins/metabolism , Ligands , Polysaccharides/metabolism , Receptors, Virus/metabolism
8.
Cell Rep ; 36(1): 109317, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233195

ABSTRACT

The R2TP (RUVBL1-RUVBL2-RPAP3-PIH1D1) complex, in collaboration with heat shock protein 90 (HSP90), functions as a chaperone for the assembly and stability of protein complexes, including RNA polymerases, small nuclear ribonucleoprotein particles (snRNPs), and phosphatidylinositol 3-kinase (PI3K)-like kinases (PIKKs) such as TOR and SMG1. PIKK stabilization depends on an additional complex of TELO2, TTI1, and TTI2 (TTT), whose structure and function are poorly understood. The cryoelectron microscopy (cryo-EM) structure of the human R2TP-TTT complex, together with biochemical experiments, reveals the mechanism of TOR recruitment to the R2TP-TTT chaperone. The HEAT-repeat TTT complex binds the kinase domain of TOR, without blocking its activity, and delivers TOR to the R2TP chaperone. In addition, TTT regulates the R2TP chaperone by inhibiting RUVBL1-RUVBL2 ATPase activity and by modulating the conformation and interactions of the PIH1D1 and RPAP3 components of R2TP. Taken together, our results show how TTT couples the recruitment of TOR to R2TP with the regulation of this chaperone system.


Subject(s)
Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/metabolism , Cryoelectron Microscopy , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Protein Domains , Protein Interaction Mapping , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Structure-Activity Relationship
9.
J Vis Exp ; (171)2021 05 29.
Article in English | MEDLINE | ID: mdl-34125091

ABSTRACT

Cryo-electron microscopy (cryoEM) is a powerful technique for structure determination of macromolecular complexes, via single particle analysis (SPA). The overall process involves i) vitrifying the specimen in a thin film supported on a cryoEM grid; ii) screening the specimen to assess particle distribution and ice quality; iii) if the grid is suitable, collecting a single particle dataset for analysis; and iv) image processing to yield an EM density map. In this protocol, an overview for each of these steps is provided, with a focus on the variables which a user can modify during the workflow and the troubleshooting of common issues. With remote microscope operation becoming standard in many facilities, variations on imaging protocols to assist users in efficient operation and imaging when physical access to the microscope is limited will be described.


Subject(s)
Image Processing, Computer-Assisted , Cryoelectron Microscopy , Macromolecular Substances
10.
Nat Commun ; 12(1): 2791, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990582

ABSTRACT

Insect pests are a major cause of crop losses worldwide, with an estimated economic cost of $470 billion annually. Biotechnological tools have been introduced to control such insects without the need for chemical pesticides; for instance, the development of transgenic plants harbouring genes encoding insecticidal proteins. The Vip3 (vegetative insecticidal protein 3) family proteins from Bacillus thuringiensis convey toxicity to species within the Lepidoptera, and have wide potential applications in commercial agriculture. Vip3 proteins are proposed to exert their insecticidal activity through pore formation, though to date there is no mechanistic description of how this occurs on the membrane. Here we present cryo-EM structures of a Vip3 family toxin in both inactive and activated forms in conjunction with structural and functional data on toxin-membrane interactions. Together these data demonstrate that activated Vip3Bc1 complex is able to insert into membranes in a highly efficient manner, indicating that receptor binding is the likely driver of Vip3 specificity.


Subject(s)
Bacillus thuringiensis Toxins/chemistry , Bacillus thuringiensis Toxins/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Animals , Bacillus thuringiensis Toxins/genetics , Bacterial Proteins/ultrastructure , Binding Sites , Cryoelectron Microscopy , Genetic Variation , Insecticides/chemistry , Insecticides/pharmacology , Liposomes/chemistry , Models, Molecular , Pest Control, Biological , Protein Domains , Protein Structure, Quaternary , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Structural Homology, Protein
11.
Sci Adv ; 7(3)2021 01.
Article in English | MEDLINE | ID: mdl-33523887

ABSTRACT

The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo-electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.

12.
Structure ; 28(11): 1238-1248.e4, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32814033

ABSTRACT

A host of new technologies are under development to improve the quality and reproducibility of cryoelectron microscopy (cryoEM) grid preparation. Here we have systematically investigated the preparation of three macromolecular complexes using three different vitrification devices (Vitrobot, chameleon, and a time-resolved cryoEM device) on various timescales, including grids made within 6 ms (the fastest reported to date), to interrogate particle behavior at the air-water interface for different timepoints. Results demonstrate that different macromolecular complexes can respond to the thin-film environment formed during cryoEM sample preparation in highly variable ways, shedding light on why cryoEM sample preparation can be difficult to optimize. We demonstrate that reducing time between sample application and vitrification is just one tool to improve cryoEM grid quality, but that it is unlikely to be a generic "silver bullet" for improving the quality of every cryoEM sample preparation.


Subject(s)
Apoferritins/ultrastructure , Chaperonin 60/ultrastructure , Cryoelectron Microscopy/methods , Imaging, Three-Dimensional/methods , Mitochondrial Proteins/ultrastructure , Ribosomal Proteins/ultrastructure , Ribosomes/ultrastructure , Air/analysis , Animals , Biomarkers/metabolism , Cryoelectron Microscopy/instrumentation , Escherichia coli/chemistry , Gene Expression , Horses , Humans , Imaging, Three-Dimensional/instrumentation , Surface Properties , Time Factors , Vitrification , Water/chemistry
13.
PLoS Pathog ; 16(4): e1008465, 2020 04.
Article in English | MEDLINE | ID: mdl-32271834

ABSTRACT

Roundworm parasite infections are a major cause of human and livestock disease worldwide and a threat to global food security. Disease control currently relies on anthelmintic drugs to which roundworms are becoming increasingly resistant. An alternative approach is control by vaccination and 'hidden antigens', components of the worm gut not encountered by the infected host, have been exploited to produce Barbervax, the first commercial vaccine for a gut dwelling nematode of any host. Here we present the structure of H-gal-GP, a hidden antigen from Haemonchus contortus, the Barber's Pole worm, and a major component of Barbervax. We demonstrate its novel architecture, subunit composition and topology, flexibility and heterogeneity using cryo-electron microscopy, mass spectrometry, and modelling. Importantly, we demonstrate that complexes with the same architecture are present in other Strongylid roundworm parasites including human hookworm. This suggests a common ancestry and the potential for development of a unified hidden antigen vaccine.


Subject(s)
Endopeptidases/metabolism , Endopeptidases/ultrastructure , Haemonchus/immunology , Helminth Proteins/metabolism , Helminth Proteins/ultrastructure , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/ultrastructure , Animals , Anthelmintics/pharmacology , Antibodies, Helminth , Antigens, Helminth/immunology , Cryoelectron Microscopy , Endopeptidases/immunology , Haemonchus/pathogenicity , Helminth Proteins/immunology , Membrane Glycoproteins/immunology , Parasites , Vaccination , Vaccines/immunology
14.
Nat Commun ; 11(1): 1182, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132534

ABSTRACT

Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO), we report a disordered protein-GO co-assembling system that through a diffusion-reaction process and disorder-to-order transitions generates hierarchically organized materials that exhibit high stability and access to non-equilibrium on demand. We use experimental approaches and molecular dynamics simulations to describe the underlying molecular mechanism of formation and establish key rules for its design and regulation. Through rapid prototyping techniques, we demonstrate the system's capacity to be controlled with spatio-temporal precision into well-defined capillary-like fluidic microstructures with a high level of biocompatibility and, importantly, the capacity to withstand flow. Our study presents an innovative approach to transform rational supramolecular design into functional engineering with potential widespread use in microfluidic systems and organ-on-a-chip platforms.


Subject(s)
Bioprinting/methods , Equipment Design/methods , Graphite/chemistry , Lab-On-A-Chip Devices , ets-Domain Protein Elk-1/chemistry , Animals , Cell Culture Techniques/methods , Cell Line , Chick Embryo , Chorioallantoic Membrane , Human Umbilical Vein Endothelial Cells , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Printing, Three-Dimensional , Protein Multimerization , Protein Structure, Quaternary
15.
Nat Commun ; 10(1): 5682, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831739

ABSTRACT

Acidic macromolecules are traditionally considered key to calcium carbonate biomineralisation and have long been first choice in the bio-inspired synthesis of crystalline materials. Here, we challenge this view and demonstrate that low-charge macromolecules can vastly outperform their acidic counterparts in the synthesis of nanocomposites. Using gold nanoparticles functionalised with low charge, hydroxyl-rich proteins and homopolymers as growth additives, we show that extremely high concentrations of nanoparticles can be incorporated within calcite single crystals, while maintaining the continuity of the lattice and the original rhombohedral morphologies of the crystals. The nanoparticles are perfectly dispersed within the host crystal and at high concentrations are so closely apposed that they exhibit plasmon coupling and induce an unexpected contraction of the crystal lattice. The versatility of this strategy is then demonstrated by extension to alternative host crystals. This simple and scalable occlusion approach opens the door to a novel class of single crystal nanocomposites.


Subject(s)
Biomineralization , Macromolecular Substances/chemistry , Nanocomposites/chemistry , Biomimetics , Calcium Carbonate/chemistry , Crystallization , Glycoproteins , Gold/chemistry , Metal Nanoparticles/chemistry , Minerals/chemistry , Particle Size , Proteins
16.
Nature ; 575(7783): 535-539, 2019 11.
Article in English | MEDLINE | ID: mdl-31723268

ABSTRACT

The cytochrome b6 f (cytb6 f ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis1-3. Electron transfer within cytb6 f occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH2) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation2. In higher plants, cytb6 f also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses3. Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cytb6 f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cytb6 f monomer near the PQ oxidation site (Qp) adjacent to haem bp and chlorophyll a. Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Qp site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Qn) on the PQ1 side and committing the electron transfer network to turnover at the occupied Qn site in the neighbouring monomer. A conformational switch involving the haem cn propionate promotes two-electron, two-proton reduction at the Qn site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Qp and Qn sites in opposite monomers during the Q cycle. The spinach cytb6 f structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis.


Subject(s)
Cryoelectron Microscopy , Cytochrome b6f Complex/chemistry , Cytochrome b6f Complex/ultrastructure , Spinacia oleracea/chemistry , Spinacia oleracea/ultrastructure , Binding Sites , Chlorophyll/chemistry , Heme/chemistry , Lipids/chemistry , Models, Molecular , Oxidation-Reduction , Photosynthesis , Plastoquinone/chemistry , Structure-Activity Relationship
17.
Structure ; 27(12): 1761-1770.e3, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31611039

ABSTRACT

The Luteoviridae are pathogenic plant viruses responsible for significant crop losses worldwide. They infect a wide range of food crops, including cereals, legumes, cucurbits, sugar beet, sugarcane, and potato and, as such, are a major threat to global food security. Viral replication is strictly limited to the plant vasculature, and this phloem limitation, coupled with the need for aphid transmission of virus particles, has made it difficult to generate virus in the quantities needed for high-resolution structural studies. Here, we exploit recent advances in heterologous expression in plants to produce sufficient quantities of virus-like particles for structural studies. We have determined their structures to high resolution by cryoelectron microscopy, providing the molecular-level insight required to rationally interrogate luteovirid capsid formation and aphid transmission, thereby providing a platform for the development of preventive agrochemicals for this important family of plant viruses.


Subject(s)
Cryoelectron Microscopy/methods , Luteoviridae/ultrastructure , Plant Viruses/ultrastructure , Virion/ultrastructure , Amino Acid Sequence , Animals , Aphids/physiology , Aphids/virology , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Gene Expression Regulation, Viral , Insect Vectors/physiology , Insect Vectors/virology , Luteoviridae/genetics , Luteoviridae/physiology , Phloem/parasitology , Phloem/virology , Plant Diseases/virology , Plant Viruses/genetics , Plant Viruses/physiology , Protein Conformation , Sequence Homology, Amino Acid , Virion/genetics , Virion/physiology
18.
Nucleic Acids Res ; 47(21): 11441-11451, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31642494

ABSTRACT

DNA nanotechnology allows for the design of programmable DNA-built nanodevices which controllably interact with biological membranes and even mimic the function of natural membrane proteins. Hydrophobic modifications, covalently linked to the DNA, are essential for targeted interfacing of DNA nanostructures with lipid membranes. However, these hydrophobic tags typically induce undesired aggregation eliminating structural control, the primary advantage of DNA nanotechnology. Here, we study the aggregation of cholesterol-modified DNA nanostructures using a combined approach of non-denaturing polyacrylamide gel electrophoresis, dynamic light scattering, confocal microscopy and atomistic molecular dynamics simulations. We show that the aggregation of cholesterol-tagged ssDNA is sequence-dependent, while for assembled DNA constructs, the number and position of the cholesterol tags are the dominating factors. Molecular dynamics simulations of cholesterol-modified ssDNA reveal that the nucleotides wrap around the hydrophobic moiety, shielding it from the environment. Utilizing this behavior, we demonstrate experimentally that the aggregation of cholesterol-modified DNA nanostructures can be controlled by the length of ssDNA overhangs positioned adjacent to the cholesterol. Our easy-to-implement method for tuning cholesterol-mediated aggregation allows for increased control and a closer structure-function relationship of membrane-interfacing DNA constructs - a fundamental prerequisite for employing DNA nanodevices in research and biomedicine.


Subject(s)
Chemical Precipitation , Cholesterol/chemistry , DNA, Single-Stranded , Nanostructures/chemistry , Nanotechnology/methods , Base Sequence/physiology , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Docking Simulation , Nucleic Acid Conformation
19.
J Am Chem Soc ; 141(13): 5211-5219, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30856321

ABSTRACT

The self-assembly of proteins into higher order structures is ubiquitous in living systems. It is also an essential process for the bottom-up creation of novel molecular architectures and devices for synthetic biology. However, the complexity of protein-protein interaction surfaces makes it challenging to mimic natural assembly processes in artificial systems. Indeed, many successful computationally designed protein assemblies are prescreened for "designability", limiting the choice of components. Here, we report a simple and pragmatic strategy to assemble chosen multisubunit proteins into more complex structures. A coiled-coil domain appended to one face of the pentameric cholera toxin B-subunit (CTB) enabled the ordered assembly of tubular supra-molecular complexes. Analysis of a tubular structure determined by X-ray crystallography has revealed a hierarchical assembly process that displays features reminiscent of the polymorphic assembly of polyomavirus proteins. The approach provides a simple and straightforward method to direct the assembly of protein building blocks which present either termini on a single face of an oligomer. This scaffolding approach can be used to generate bespoke supramolecular assemblies of functional proteins. Additionally, structural resolution of the scaffolded assemblies highlight "native-state" forced protein-protein interfaces, which may prove useful as starting conformations for future computational design.


Subject(s)
Cholera Toxin/chemistry , Proteins/chemistry , Algorithms , Crystallography, X-Ray , Models, Molecular , Protein Binding , Protein Domains
20.
Nat Protoc ; 14(1): 100-118, 2019 01.
Article in English | MEDLINE | ID: mdl-30487656

ABSTRACT

The dramatic growth in the use of cryo-electron microscopy (cryo-EM) to generate high-resolution structures of macromolecular complexes has changed the landscape of structural biology. The majority of structures deposited in the Electron Microscopy Data Bank (EMDB) at higher than 4-Å resolution were collected on Titan Krios microscopes. Although the pipeline for single-particle data collection is becoming routine, there is much variation in how sessions are set up. Furthermore, when collection is under way, there are a range of approaches for efficiently moving and pre-processing these data. Here, we present a standard operating procedure for single-particle data collection with Thermo Fisher Scientific EPU software, using the two most common direct electron detectors (the Thermo Fisher Scientific Falcon 3 (F3EC) and the Gatan K2), as well as a strategy for structuring these data to enable efficient pre-processing and on-the-fly monitoring of data collection. This protocol takes 3-6 h to set up a typical automated data collection session.


Subject(s)
Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/statistics & numerical data , Macromolecular Substances/ultrastructure , Cryoelectron Microscopy/instrumentation , Databases, Factual , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...