Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
ACS Photonics ; 10(12): 4315-4321, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38145168

ABSTRACT

We report on the mechanism of enhancing the luminance and external quantum efficiency (EQE) by developing nanostructured channels in hybrid (organic/inorganic) light-emitting transistors (HLETs) that combine a solution-processed oxide and a polymer heterostructure. The heterostructure comprised two parts: (i) the zinc tin oxide/zinc oxide (ZTO/ZnO), with and without ZnO nanowires (NWs) grown on the top of the ZTO/ZnO stack, as the charge transport layer and (ii) a polymer Super Yellow (SY, also known as PDY-132) layer as the light-emitting layer. Device characterization shows that using NWs significantly improves luminance and EQE (≈1.1% @ 5000 cd m-2) compared to previously reported similar HLET devices that show EQE < 1%. The size and shape of the NWs were controlled through solution concentration and growth time, which also render NWs to have higher crystallinity. Notably, the size of the NWs was found to provide higher escape efficiency for emitted photons while offering lower contact resistance for charge injection, which resulted in the improved optical performance of HLETs. These results represent a significant step forward in enabling efficient and all-solution-processed HLET technology for lighting and display applications.

2.
RSC Adv ; 12(44): 28746-28754, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320514

ABSTRACT

The surface properties of epoxy resin coatings influence their function as substrates for subsequent coats. Variation in ambient cure conditions (temperature and relative humidity, RH), stoichiometry (ratio of epoxy: amine) and delay time between epoxy component mixing and film casting ("induction time") significantly altered the surface properties of ambient cured epoxy resin coatings (Dow Epoxy Novolac D.E.N. 431, resorcinol diglycidyl ether and 4,4-diaminodicyclohexylmethane). Gravimetric analysis showed that increasing induction time significantly reduced surface layer formation (carbamation) of cured epoxy resin coatings at 80% RH but had no measurable effect at 40% RH and below. RMS surface roughness increased with increasing RH and decreased with increasing induction time and ambient cure temperature, at two stoichiometric extremes. However, the net change in surface area arising from these conditions was not sufficient to significantly alter the equilibrium contact angles or wetting regime. We conclude that the observed significant variation in surface wettability was more likely to depend on variation in surface chemistry than roughness; stoichiometry was the variable which most significantly influenced surface wettability, average void volume and fractional free volume, while cure temperature significantly influenced the extent of cure at both stoichiometries. Off-stoichiometry formulation and elevated ambient cure temperature significantly increased system average void volume while fractional free volume decreased, which may be significant for the barrier properties of the final coating.

3.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745015

ABSTRACT

Novel fluorescent Langmuir-Blodgett (LB) films have been constructed from three different amphiphilic dicynaoquinodimethanes (DADQs). The DADQs varied in functional group structure, which had an impact on the LB film structure and the fluorescence properties. As the fluorescence of DADQs competes with non-radiative decay (conformational change), the packing and/or free volume in the LB film will influence the average fluorescence lifetime and integrated intensity. The pristine (blank) LB films were then exposed to a selection of non-fluorescent target analytes (some with environmental relevance) and the fluorescence was measured and analyzed relative to the pristine LB film. Exposure of the LB films to selected target analytes results in a modulation of the fluorescence, both with respect to average fluorescence lifetime and integrated intensity. The modulation of the fluorescence is different for different DADQ LB films and can be attributed to restricted non-radiative decays or charge transfer reactions between target analyte and DADQ LB film. The response from the DADQ LB films shows that these systems can be developed into sensing surfaces based on fluorescence measurements.


Subject(s)
Fluorescence
4.
Polymers (Basel) ; 13(19)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34641221

ABSTRACT

Water-soluble nonionic surfactant, pentaethylene glycol monododecyl ether, C12E5, spontaneously blooms to the surface of spin-cast hydrophobic polyisoprenes, generating hydrophilic surfaces. This system provides a simple model for hydrophilic chemical modification of rubbery polymers that demonstrates surprisingly rich, complex, and unexpected behaviour. The vertical depth profiles were quantified using neutron reflectometry (NR) using a novel procedure to account for undulations in the film thickness. Surface properties were characterized using contact angle analysis and atomic force microscopy (AFM). Despite the low surface tension of the toluene solvent used in film preparation and the low surface energy of the polyisoprene (PI) matrix, NR depth profiles revealed clear evidence of surfactant segregation. This surface layer was typically thicker than a monolayer, but incomplete, yet was remarkably stable with respect to dissolution, even when exposed to hundreds of thousands of times the volume of water required to dissolve all the surfactant on the surface. Despite the apparent resistance to removal from the surface, water exposure does alter the subsequent wettability of the surface, with a hydrophilic-to-hydrophobic transition occurring after rinsing. Complementary AFM images of these C12E5/cis-PI films showed unexpected strand-like features on the surface of the film, which we attribute to a non-uniform lateral distribution of some of the surfactant. This surface structure becomes more evident after rinsing, and it appears that there are two distinct populations of surfactant on the PI film surface. We conclude that some of the bloomed surfactant exists as layers, which are relatively inert with respect to rinsing or surface modification, and some is laterally inhomogeneous. This latter population is primarily responsible for surface wetting behaviour but is not detected by specular NR.

5.
Curr Issues Mol Biol ; 41: 267-356, 2021.
Article in English | MEDLINE | ID: mdl-32883886

ABSTRACT

We are at an interesting time in the understanding of alpha herpesvirus latency and reactivation and their implications to human disease. Conceptual advances have come from both animal and neuronal culture models. This review focuses on the concept that the tegument protein and viral transactivator VP16 plays a major role in the transition from latency to the lytic cycle. During acute infection, regulation of VP16 transactivation balances spread in the nervous system, establishment of latent infections and virulence. Reactivation is dependent on this transactivator to drive entry into the lytic cycle. In vivo de novo expression of VP16 protein is mediated by sequences conferring pre-immediate early transcription embedded in the normally leaky late promoter. In vitro, alternate mechanisms regulating VP16 expression in the context of latency have come from the SCG neuron culture model and include the concepts that (i) generalized transcriptional derepression of the viral genome and sequestration of VP16 in the cytoplasm for ~48 hours (Phase I) precedes and is required for VP16-dependent reactivation (Phase II); and (ii) a histone methyl/phospho switch during Phase I is required for Phase II reactivation. The challenge to the field is reconciling these data into a unified model of virus reactivation. The task of compiling this review was uncomfortably humbling, as if cataloging the stars in the universe. While not completely dark, our night sky is missing a multitude of studies which are among the many points of light contributing to our field. This article is a focused review in which we discuss from the vantage point of our expertise, just a handful of concepts that have or are emerging. A lookback at some of the pioneering work that grounds our field is also included.


Subject(s)
Alphaherpesvirinae/genetics , Herpes Simplex/virology , Latent Infection/virology , Simplexvirus/genetics , Virus Latency/genetics , Animals , Genome, Viral/genetics , Herpes Simplex Virus Protein Vmw65/genetics , Humans , Neurons/virology , Transcription, Genetic/genetics
6.
Langmuir ; 36(17): 4795-4807, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32271588

ABSTRACT

The vertical depth distributions of amine oxide surfactants, N,N-dimethyldodecyl amine N-oxide (DDAO) and N,N-dimethyltetradecyl amine N-oxide (DTAO), in poly(vinyl alcohol) (PVA) films were explored using neutron reflectometry (NR). In both binary and plasticized films, the two deuterated surfactants formed a single monolayer on the film surface with the remaining surfactant homogeneously distributed throughout the bulk of the film. Small-angle neutron scattering and mechanical testing revealed that these surfactants acted like plasticizers in the bulk, occupying the amorphous regions of PVA and reducing its glass-transition temperature. NR revealed little impact of plasticizer (glycerol) incorporation on the behavior of these surfactants in PVA. The surfactant molecular area in the segregated monolayer was smaller for DTAO than for DDAO, indicating that the larger molecule was more densely packed at the surface. Surface tension was used to assess the solution behavior of these surfactants and the effect of glycerol incorporation. Determination of molecular area of each surfactant on the solution surface revealed that the structures of the surface monolayers are remarkably consistent when water is placed by the solid PVA. Incorporation of glycerol caused a decrease of molecular area for DDAO and increase in molecular area for DTAO both in solution and in PVA. This suggests that the head group interactions, which normally limit the minimum area per adsorbed molecule, are modified by the length of the alkyl tail.

7.
Macromolecules ; 53(7): 2299-2309, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32308214

ABSTRACT

The compatibility and surface behavior of squalane-polybutadiene mixtures are studied by experimental cloud point and neutron reflectivity measurements, statistical associating fluid theory (SAFT), and molecular dynamics (MD) simulations. A SAFT-γ Mie model is shown to be successful in capturing the cloud point curves of squalane-polybutadiene and squalane-cis-polybutadiene binary mixtures, and the same SAFT-γ Mie model is used to develop a thermodynamically consistent top-down coarse-grained force field to describe squalane-polybutadiene. Coarse-grained molecular dynamics simulations are performed to study surface behavior for different concentrations of squalane, with the system exhibiting surface enrichment and a wetting transition. Simulated surface profiles are compared with those obtained by fitting to neutron reflectivity data obtained from thin films composed of deuterated squalane (d-sq)-polybutadiene. The presented top-down parametrization methodology is a fast and thermodynamically reliable approach for predicting properties of oligomer-polymer mixtures, which can be challenging for either theory or MD simulations alone.

8.
PLoS Pathog ; 16(3): e1008296, 2020 03.
Article in English | MEDLINE | ID: mdl-32134994

ABSTRACT

A fundamental question in herpes simplex virus (HSV) pathogenesis is the consequence of viral reactivation to the neuron. Evidence supporting both post-reactivation survival and demise is published. The exceedingly rare nature of this event at the neuronal level in the sensory ganglion has limited direct examination of this important question. In this study, an in-depth in vivo analysis of the resolution of reactivation was undertaken. Latently infected C57BL/6 mice were induced to reactivate in vivo by hyperthermic stress. Infectious virus was detected in a high percentage (60-80%) of the trigeminal ganglia from these mice at 20 hours post-reactivation stimulus, but declined by 48 hours post-stimulus (0-13%). With increasing time post-reactivation stimulus, the percentage of reactivating neurons surrounded by a cellular cuff increased, which correlated with a decrease in detectable infectious virus and number of viral protein positive neurons. Importantly, in addition to intact viral protein positive neurons, fragmented viral protein positive neurons morphologically consistent with apoptotic bodies and containing cleaved caspase-3 were detected. The frequency of this phenotype increased through time post-reactivation. These fragmented neurons were surrounded by Iba1+ cells, consistent with phagocytic removal of dead neurons. Evidence of neuronal destruction post-reactivation prompted re-examination of the previously reported non-cytolytic role of T cells in controlling reactivation. Latently infected mice were treated with anti-CD4/CD8 antibodies prior to induced reactivation. Neither infectious virus titers nor neuronal fragmentation were altered. In contrast, when viral DNA replication was blocked during reactivation, fragmentation was not observed even though viral proteins were expressed. Our data demonstrate that at least a portion of reactivating neurons are destroyed. Although no evidence for direct T cell mediated antigen recognition in this process was apparent, inhibition of viral DNA replication blocked neuronal fragmentation. These unexpected findings raise new questions about the resolution of HSV reactivation in the host nervous system.


Subject(s)
Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Neurons/virology , Virus Activation , Animals , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Female , Herpes Simplex/genetics , Herpes Simplex/metabolism , Herpes Simplex/physiopathology , Herpesvirus 1, Human/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Virus Replication
9.
Polymers (Basel) ; 12(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947559

ABSTRACT

This aims to establish design rules for the influence of complex polymer matrices on the surface properties of small molecules. Here, we consider the dependence of the surface behaviour of some model additives on polymer matrix hydrophobicity. With stoichiometric control over hydrolysis, we generate systematic changes in matrix chemistry from non-polar, hydrophobic PVAc to its hydrolysed and hydrophilic analogue, PVA. With the changing degree of hydrolysis (DH), the behaviour of additives can be switched in terms of compatibility and surface activity. Sorbitol, a polar sugar-alcohol of inherently high surface energy, blooms to the surface of PVAc, forming patchy domains on surfaces. With the increasing DH of the polymer matrix, its surface segregation decreases to the point where sorbitol acts as a homogeneously distributed plasticiser in PVA. Conversely, and despite its low surface energy, octanoic acid (OA) surprisingly causes the increased wettability of PVAc. We attribute these observations to the high compatibility of OA with PVAc and its ability to reorient upon exposure to water, presenting a hydrophilic COOH-rich surface. The surfactant sodium dodecyl sulfate (SDS) does not show such a clear dependence on the matrix and formed wetting layers over a wide range of DH. Interestingly, SDS appears to be most compatible with PVAc at intermediate DH, which is consistent with the amphiphilic nature of both species under these conditions. Thus, we show that the prediction of the segregation is not simple and depends on multiple factors including hydrophobicity, compatibility, blockiness, surface energy, and the mobility of the components.

10.
Methods Mol Biol ; 2060: 219-239, 2020.
Article in English | MEDLINE | ID: mdl-31617181

ABSTRACT

Two important components of a useful strategy to examine viral gene function, regulation, and pathogenesis in vivo are (1) a highly efficient protocol to generate viral mutants that limits undesired mutation and retains full replication competency in vivo, and (2) an efficient system to detect and quantify viral promoter activity and gene expression in rare cells in vivo and to gain insight into the surrounding tissue environment. Our strategy and protocols for generating, characterizing, and employing HSV viral promoter/reporter mutants in vivo are provided in this two-part chapter.


Subject(s)
Gene Expression Regulation, Viral , Herpes Simplex , Herpesvirus 1, Human/physiology , Promoter Regions, Genetic , Virus Latency , Animals , Herpes Simplex/genetics , Herpes Simplex/metabolism , Herpes Simplex/pathology , Humans , Mutation , Rabbits
11.
Front Microbiol ; 10: 1624, 2019.
Article in English | MEDLINE | ID: mdl-31396171

ABSTRACT

Infection and life-long residence in the human nervous system is central to herpes simplex virus (HSV) pathogenesis. Access is gained through innervating axonal projections of sensory neurons. This distinct mode of entry separates the viral genome from tegument proteins, including the potent transactivator of viral IE genes, VP16. This, in turn, promotes a balance between lytic and latent infection which underlies the ability of the virus to invade, disseminate, and set up a large reservoir of latent infections. In the mouse ocular model, TG neurons marked as either "latent" or "lytic" at 48 h postinfection indicated that these programs were selected early and were considered distinct and mutually exclusive. More recently, a temporal analysis of viral program selection revealed a default latent-like state that begins at ~18 h postinfection and in individual neurons, precedes entry into the viral lytic cycle. Studies using refined viral mutants demonstrated that transition out of this latent program depended upon the transactivation function of VP16. Pursuit of the apparent incongruity between the established leaky-late kinetics of VP16 expression with a "preimmediate-early" function led to the discovery of an unrecognized regulatory feature of the HSV-1 VP16 promoter near/downstream of its TATA box. Among three potential sites identified was a putative Egr-1/Sp1 site. Here, we report that a refined mutation of this site, while having no impact on replication in cultured cells or cornea, resulted in ~100-fold reduction in lytic infection in TG in vivo. Notably, the HSV-2 VP16 promoter has 13 direct tandem-repeats upstream of its TATA box forming multiple potential overlapping Egr-1/Sp1 sites. Thus, despite different structures, these promoters might share function in directing the preimmediate-early VP16 protein expression. To test this, the HSV-1 VP16 promoter/5'UTR was replaced by the HSV-2 VP16 promoter/5'UTR in the HSV-1 backbone. Compared to the genomically repaired isolate, the HSV-2 VP16 promoter/5'UTR (1) accelerated the transition into the lytic cycle, and enhanced (2) virulence, and (3) entry into the lytic cycle following a reactivation stressor. These gain-of-function phenotypes support the hypothesis that the VP16 promoter regulates the latent/lytic boundary in neurons and that the HSV-1 and HSV-2 promoter/5'UTRs encode distinct thresholds for this transition.

12.
Soft Matter ; 15(26): 5296-5307, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31225548

ABSTRACT

This paper describes the structures created by assembling functionalised entangled polymers and the effect these have on the rheology of the material. A polybutadiene (PBd) linear polymer precursor of sufficient molecular weight to be entangled is used. This is end functionalised with the self-associating group 2-ureido-4pyrimidinone (UPy). Interestingly, despite the relatively high molecular weight of the precursor diluting the UPy concentration, the effect on the material's properties is significant. To characterise the assembled microstructure we present linear rheology, extensional non-linear rheology and small angle X-ray scattering (SAXS). The linear rheology shows that the functionalised PBd assembles into large macro-structures where the terminal relaxation time is up to seven orders of magnitude larger than the precursor. The non-linear rheology shows strain-hardening over a broad range of strain-rates. We then show by both SAXS and modelling of the extensional data that there must exist clusters of UPy associations and hence assembled polymers with branched architecture. By modelling the supra-molecular structure as an effective linear polymer, we show that this would be insufficient in predicting the strain-hardening behaviour at lower extension-rates. Therefore, in this flow regime the strain-hardening is likely to be caused by branching. This is backed up by SAXS measurements which show that UPy clusters larger than pair-pair groups exist.

13.
Nat Chem ; 11(4): 375-381, 2019 04.
Article in English | MEDLINE | ID: mdl-30833719

ABSTRACT

Helical nanofibres play key roles in many biological processes. Entanglements between helices can aid gelation by producing thick, interconnected fibres, but the details of this process are poorly understood. Here, we describe the assembly of an achiral oligo(urea) peptidomimetic compound into supramolecular helices. Aggregation of adjacent helices leads to the formation of fibrils, which further intertwine to produce high-fidelity braids with periodic crossing patterns. A braid theory analysis suggests that braiding is governed by rigid topological constraints, and that branching occurs due to crossing defects in the developing braids. Mixed-chirality helices assemble into relatively complex, odd-stranded braids, but can also form helical bundles by undergoing inversions of chirality. The oligo(urea) assemblies are also highly sensitive to chiral amplification, proposed to occur through a majority-rules mechanism, whereby trace chiral materials can promote the formation of gels containing only homochiral helices.

14.
J Virol ; 93(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30728262

ABSTRACT

Herpes simplex virus (HSV) establishes latency in neurons of the peripheral and central nervous systems (CNS). Evidence is mounting that HSV latency and reactivation in the nervous system has the potential to promote neurodegenerative processes. Understanding how this occurs is an important human health goal. In the mouse model, in vivo viral reactivation in the peripheral nervous system, triggered by hyperthermic stress, has been well characterized with respect to frequency and cell type. However, characterization of in vivo reactivation in the CNS is extremely limited. Further, it remains unclear whether virus reactivated in the peripheral nervous system is transported to the CNS in an infectious form, how often this occurs, and what parameters underlie the efficiency and outcomes of this process. In this study, reactivation was quantified in the trigeminal ganglia (TG) and the brain stem from the same latently infected animal using direct assays of equivalent sensitivity. Reactivation was detected more frequently in the TG than in the brain stem and, in all but one case, the amount of virus recovered was greater in the TG than that detected in the brain stem. Viral protein positive neurons were observed in the TG, but a cellular source for reactivation in the brain stem was not identified, despite serially sectioning and examining the entire tissue (0/6 brain stems). These findings suggest that infectious virus detected in the brain stem is primarily the result of transport of reactivated virus from the TG into the brain stem.IMPORTANCE Latent herpes simplex virus (HSV) DNA has been detected in the central nervous systems (CNS) of humans postmortem, and infection with HSV has been correlated with the development of neurodegenerative diseases. However, whether HSV can directly reactivate in the CNS and/or infectious virus can be transported to the CNS following reactivation in peripheral ganglia has been unclear. In this study, infectious virus was recovered from both the trigeminal ganglia and the brain stem of latently infected mice following a reactivation stimulus, but a higher frequency of reactivation and increased titers of infectious virus were recovered from the trigeminal ganglia. Viral proteins were detected in neurons of the trigeminal ganglia, but a cellular source of infectious virus could not be identified in the brain stem. These results suggest that infectious virus is transported from the ganglia to the CNS following reactivation but do not exclude the potential for direct reactivation in the CNS.


Subject(s)
Brain Stem/metabolism , Herpes Simplex/metabolism , Herpesvirus 1, Human/physiology , Trigeminal Ganglion/metabolism , Viral Proteins/metabolism , Virus Activation/physiology , Virus Latency/physiology , Animals , Biological Transport, Active , Brain Stem/pathology , Brain Stem/virology , Female , Herpes Simplex/pathology , Male , Mice , Rabbits , Trigeminal Ganglion/pathology , Trigeminal Ganglion/virology
15.
Soft Matter ; 14(28): 5936, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29972383

ABSTRACT

Correction for 'Predicting oligomer/polymer compatibility and the impact on nanoscale segregation in thin films' by Elise F. D. Sabattié et al., Soft Matter, 2017, 13, 3580-3591.

16.
Langmuir ; 34(4): 1410-1418, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29293356

ABSTRACT

The blooming of sodium dodecyl sulfate (SDS) and the influence of plasticizer (glycerol) on the surfactant distribution in poly(vinyl alcohol) (PVA) films have been explored by neutron reflectometry (NR) and ion beam analysis techniques. When in binary films with PVA, deuterated SDS (d25-SDS) forms a surface excess corresponding to a wetting layer of the surfactant molecules at the film surface. The magnitude of this surface excess increased significantly in the presence of the plasticizer, and the surfactant was largely excluded from the PVA subphase. NR revealed smectic nanostructures for both SDS and glycerol components within this surface excess in plasticized films. This combined layer comprises surfactant lamellae, separated by interstitial glycerol-rich layers, which is only formed in the plasticized films and persists throughout the surface excess. Atomic force microscopy micrographs of the film surfaces revealed platelike structures in the plasticized PVA, which were consistent with the rigid defects in the surfactant-rich lamellae. The formation of these structures arises from the synergistic surface segregation of SDS and glycerol, evidenced by surface tensiometry. Cloud point analysis of bulk samples indicates a transition at ∼55% water content, below which phase separation occurs in ternary films. This transition is likely to be necessary to form the thick wetting layer observed and therefore indicates that film components remain mobile beyond this point in the drying process.

17.
Polymers (Basel) ; 10(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30960961

ABSTRACT

The effect of plasticizer species and the degree of hydrolysis (DH) on the free volume properties of poly(vinyl alcohol) (PVA) were studied using positron annihilation lifetime spectroscopy. Both glycerol and propylene glycol caused an increase in the free volume cavity radius, although exhibited distinct plasticization behavior, with glycerol capable of occupying existing free volume cavities in the PVA to some extent. The influence of water, normally present in PVA film under atmospheric conditions, was also isolated. Water added significantly to the measured free volume cavity radius in both plasticized and pure PVA matrices. Differences in plasticization behavior can be attributed to the functionality of each plasticizing additive and its hydrogen bonding capability. The increase in cavity radii upon plasticizer loading shows a qualitative link between the free volume of voids and the corresponding reduction in Tg and crystallinity. Cavity radius decreases with increasing DH, due to PVA network tightening in the absence of acetate groups. This corresponds well with the higher Tg observed in the resin with the higher DH. DH was also shown to impact the plasticization of PVA with glycerol, indicating that the larger cavities-created by the weaker hydrogen bonding acetate groups-are capable of accommodating glycerol molecules with negligible effect on the cavity dimensions.

18.
Sci Rep ; 7(1): 13666, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057909

ABSTRACT

High throughout sequencing has provided an unprecedented view of the circulating diversity of all classes of human herpesviruses. For herpes simplex virus 1 (HSV-1), we and others have previously published data demonstrating sequence diversity between hosts. However the extent of variation during transmission events, or in one host over years of chronic infection, remain unknown. Here we present an initial example of full characterization of viruses isolated from a father to son transmission event. The likely occasion of transmission occurred 17 years before the strains were isolated, enabling a first view of the degree of virus conservation after decades of recurrences, including transmission and adaptation to a new host. We have characterized the pathogenicity of these strains in a mouse ocular model of infection, and sequenced the full viral genomes. Surprisingly, we find that these two viruses have preserved their phenotype and genotype nearly perfectly during inferred transmission from father to son, and during nearly two decades of episodes of recurrent disease in each human host. Given the close genetic relationship of these two hosts, it remains to be seen whether or not this conservation of sequence will occur during non-familial transmission events.


Subject(s)
Genome, Viral , Herpesvirus 1, Human/genetics , Keratitis, Herpetic/transmission , Keratitis, Herpetic/virology , Animals , Evolution, Molecular , Herpesvirus 1, Human/pathogenicity , Humans , Infectious Disease Transmission, Vertical , Keratitis, Herpetic/physiopathology , Male , Mice , Middle Aged , Phenotype , Young Adult
19.
Soft Matter ; 13(19): 3580-3591, 2017 May 21.
Article in English | MEDLINE | ID: mdl-28443905

ABSTRACT

Compatibility between oligomers and polymers was systematically assessed using differential scanning calorimetry (DSC) and was correlated with similarity in saturation and solubility parameter. These measurements enabled validation of detailed volume of mixing calculations using Statistical Association Fluid Theory (SAFT-γ Mie) and molecular dynamics (MD) simulations, which can be used to predict behaviour beyond the experimentally accessible conditions. These simulations confirmed that squalane is somewhat more compatible with poly(isoprene), "PI" than poly(butadiene), "PB", and further enabled prediction of the temperature dependence of compatibility. Surface and interfacial segregation of a series of deuterated oligomers was quantified in rubbery polymer films: PI, PB and hydrogenated poly(isoprene) "hPI". A striking correlation was established between surface wetting transition and mixtures of low compatibility, such as oligo-dIB in PB or PI. Segregation was quantified normal to the surface by ion beam analysis and neutron reflectometry and in some cases lateral segregation was observable by AFM. While surface segregation is driven by disparity in molecular weight in highly compatible systems this trend reverses as critical point is approached, and surface segregation increases with increasing oligomer molecular weight.

20.
Sci Rep ; 7: 44269, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287164

ABSTRACT

We demonstrate that the inclusion of a small amount of the co-solvent 1,8-diiodooctane in the preparation of a bulk-heterojunction photovoltaic device increases its power conversion efficiency by 20%, through a mechanism of transient plasticisation. We follow the removal of 1,8-diiodooctane directly after spin-coating using ellipsometry and ion beam analysis, while using small angle neutron scattering to characterise the morphological nanostructure evolution of the film. In PffBT4T-2OD/PC71BM devices, the power conversion efficiency increases from 7.2% to above 8.7% as a result of the coarsening of the phase domains. This coarsening process is assisted by thermal annealing and the slow evaporation of 1,8-diiodooctane, which we suggest, acts as a plasticiser to promote molecular mobility. Our results show that 1,8-diiodooctane can be completely removed from the film by a thermal annealing process at temperatures ≤100 °C and that there is an interplay between the evaporation rate of 1,8-diiodooctane and the rate of domain coarsening in the plasticized film which helps elucidate the mechanism by which additives improve device efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...