Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Int J Hyg Environ Health ; 261: 114418, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968838

ABSTRACT

BACKGROUND: There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE: To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS: Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS: Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS: Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.

2.
Sci Total Environ ; : 174550, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004364

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous contaminants which are also found in drinking water. Concentration levels in drinking water vary widely and range from a very low contribution to total daily exposure for humans to being the major source of uptake of PFAS. PFAS concentrations in Norwegian drinking water has been rarely reported. We investigated concentrations of 31 PFAS in 164 water samples, representing both source water (i.e., before drinking water treatment) and finished drinking water. Samples were taken from 18 different water bodies across Norway. The 17 waterworks involved supply drinking water to 41 % of the Norwegian population. Only four of the waterworks utilised treatment involving activated carbon which was able to significantly reduce PFAS from the source water. Samples of source water from waterworks not employing activated carbon in treatment were therefore considered to represent drinking water with regards to PFAS (142 samples). All samples from one of the water bodies exceeded the environmental quality standard (EQS) for perfluorooctane sulfonic acid (PFOS) according to the water framework directive (0.65 ng/L). No concentrations exceeded the sum of (20) PFAS (100 ng/L) specified in the EU directive 2020/2184 for drinking water. Several EU countries have issued lower guidelines for the sum of the four PFAS that the European Food Safety Authority (EFSA) has established as the tolerable weekly intake (TWI) for PFOS, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS). Denmark and Sweden have guidelines specifying 2 and 4 ng/L for the sum of these PFAS. Only one of the 142 drinking water samples exceeded the Danish TWI and contained a sum of 6.6 ng/L PFAS. A population exposure model, for individuals drinking water from the investigated sources, showed that only 0.5 % of the population was receiving PFAS concentrations above the Danish limit of 2 ng/L.

3.
Environ Int ; 189: 108763, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824843

ABSTRACT

BACKGROUND: Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation. METHODS: The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed. RESULTS: In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben. CONCLUSIONS: By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.


Subject(s)
DNA Methylation , Endocrine Disruptors , Epigenesis, Genetic , Maternal Exposure , Phenols , Phthalic Acids , Placenta , Humans , DNA Methylation/drug effects , Female , Pregnancy , Placenta/metabolism , Placenta/drug effects , Adult , Male , CpG Islands , Environmental Pollutants
4.
Environ Int ; 190: 108845, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38945087

ABSTRACT

INTRODUCTION: Phthalates, or dieters of phthalic acid, are a ubiquitous type of plasticizer used in a variety of common consumer and industrial products. They act as endocrine disruptors and are associated with increased risk for several diseases. Once in the body, phthalates are metabolized through partially known mechanisms, involving phase I and phase II enzymes. OBJECTIVE: In this study we aimed to identify common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) associated with the metabolism of phthalate compounds in children through genome-wide association studies (GWAS). METHODS: The study used data from 1,044 children with European ancestry from the Human Early Life Exposome (HELIX) cohort. Ten phthalate metabolites were assessed in a two-void pooled urine collected at the mean age of 8 years. Six ratios between secondary and primary phthalate metabolites were calculated. Genome-wide genotyping was done with the Infinium Global Screening Array (GSA) and imputation with the Haplotype Reference Consortium (HRC) panel. PennCNV was used to estimate copy number variants (CNVs) and CNVRanger to identify consensus regions. GWAS of SNPs and CNVs were conducted using PLINK and SNPassoc, respectively. Subsequently, functional annotation of suggestive SNPs (p-value < 1E-05) was done with the FUMA web-tool. RESULTS: We identified four genome-wide significant (p-value < 5E-08) loci at chromosome (chr) 3 (FECHP1 for oxo-MiNP_oh-MiNP ratio), chr6 (SLC17A1 for MECPP_MEHHP ratio), chr9 (RAPGEF1 for MBzP), and chr10 (CYP2C9 for MECPP_MEHHP ratio). Moreover, 115 additional loci were found at suggestive significance (p-value < 1E-05). Two CNVs located at chr11 (MRGPRX1 for oh-MiNP and SLC35F2 for MEP) were also identified. Functional annotation pointed to genes involved in phase I and phase II detoxification, molecular transfer across membranes, and renal excretion. CONCLUSION: Through genome-wide screenings we identified known and novel loci implicated in phthalate metabolism in children. Genes annotated to these loci participate in detoxification, transmembrane transfer, and renal excretion.

5.
Hum Reprod Open ; 2024(2): hoae018, 2024.
Article in English | MEDLINE | ID: mdl-38689737

ABSTRACT

STUDY QUESTION: Is exposure to environmental chemicals associated with modifications of placental morphology and function? SUMMARY ANSWER: Phthalates, a class of ubiquitous chemicals, showed an association with altered placental weight, placental vascular resistance (PVR), and placental efficiency. WHAT IS KNOWN ALREADY: Only a few epidemiological studies have assessed the effects of phenols and phthalates on placental health. Their results were affected by exposure measurement errors linked to the rapid excretion of these compounds and the reliance on a limited number of spot urine samples to assess exposure. STUDY DESIGN SIZE DURATION: A prospective mother-child cohort, with improved exposure assessment for non-persistent chemicals, recruited participants between 2014 and 2017. Sample size ranged between 355 (placental parameters measured at birth: placental weight and placental-to-fetal weight ratio (PFR): a proxy for placental efficiency) and 426 (placental parameters measured during pregnancy: placental thickness and vascular resistance). PARTICIPANTS/MATERIALS SETTING METHODS: Phenols (four parabens, two bisphenols, triclosan, and benzophenone-3), 13 phthalate metabolites, and two non-phthalate plasticizer metabolites were measured in within-subject pools of repeated urine samples collected during the second and third trimesters of pregnancy (median = 21 samples/trimester/woman). Placental thickness and PVR were measured during pregnancy. The placenta was weighed at birth and the PFR was computed. Both adjusted linear regression and Bayesian Kernel Machine Regression were used to evaluate associations between phenols and phthalates (alone or as a mixture) and placental parameters. Effect modification by child sex was also investigated. MAIN RESULTS AND THE ROLE OF CHANCE: Several phthalate metabolites were negatively associated with placental outcomes. Monobenzyl phthalate (MBzP) concentrations, during the second and third trimesters of pregnancy, were associated with a decrease in both placental weight at birth (ß = -20.1 g [95% CI: -37.8; -2.5] and ß = -17.4 g [95% CI: -33.2; -1.6], for second and third trimester, respectively) and PFR (ß = -0.5 [95% CI: -1, -0.1] and ß = -0.5 [95% CI: -0.9, -0.1], for the second and third trimester, respectively). Additionally, MBzP was negatively associated with PVR during the third trimester (ß= -0.9 [95% CI: -1.8; 0.1]). Mono-n-butyl phthalate (MnBP), was negatively associated with PVR in both trimesters (ß = -1.3, 95% CI: [-2.3, -0.2], and ß = -1.2, 95% CI: [-2.4, -0.03], for the second and third trimester, respectively). After stratification for child sex, Σ diisononyl phthalate (DiNP) (either second or third-trimester exposures, depending on the outcomes considered) was associated with decreased PVR in the third trimester, as well as decreased placental weight and PFR in males. No associations were observed for phenol biomarkers. LIMITATIONS REASONS FOR CAUTION: False positives cannot be ruled out. Therefore, chemicals that were associated with multiple outcomes (MnBP and DiNP) or reported in existing literature as associated with placental outcomes (MBzP) should be considered as the main results. WIDER IMPLICATIONS OF THE FINDINGS: Our results are consistent with in vitro studies showing that phthalates target peroxisome proliferator-activated receptor γ, in the family of nuclear receptors involved in key placental development processes such as trophoblast proliferation, migration, and invasion. In addition to placental weight at birth, we studied placental parameters during pregnancy, which could provide a broader view of how environmental chemicals affect maternal-fetal exchanges over the course of pregnancy. Our findings contribute to the increasing evidence indicating adverse impacts of phthalate exposure on placental health. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the French Research Agency-ANR (MEMORI project ANR-21-CE34-0022). The SEPAGES cohort was supported by the European Research Council (N°311765-E-DOHaD), the European Community's Seventh Framework Programme (FP7/2007-206-N°308333-892 HELIX), the European Union's Horizon 2020 research and innovation programme (N° 874583 ATHLETE Project, N°825712 OBERON Project), the French Research Agency-ANR (PAPER project ANR-12-PDOC-0029-01, SHALCOH project ANR-14-CE21-0007, ANR-15-IDEX-02 and ANR-15-IDEX5, GUMME project ANR-18-CE36-005, ETAPE project ANR-18-CE36-0005-EDeN project ANR-19-CE36-0003-01), the French Agency for Food, Environmental and Occupational Health & Safety-ANSES (CNAP project EST-2016-121, PENDORE project EST-2016-121, HyPAxE project EST-2019/1/039, PENDALIRE project EST-2022-169), the Plan Cancer (Canc'Air project), the French Cancer Research Foundation Association de Recherche sur le Cancer-ARC, the French Endowment Fund AGIR for chronic diseases-APMC (projects PRENAPAR, LCI-FOT, DysCard), the French Endowment Fund for Respiratory Health, the French Fund-Fondation de France (CLIMATHES-00081169, SEPAGES 5-00099903, ELEMENTUM-00124527). N.J. was supported by a doctoral fellowship from the University Grenoble Alpes. V.M. was supported by a Sara Borrell postdoctoral research contract (CD22/00176), granted by Instituto de Salud Carlos III (Spain) and NextGenerationEU funds. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT02852499.

6.
Environ Health Perspect ; 132(5): 57002, 2024 May.
Article in English | MEDLINE | ID: mdl-38728218

ABSTRACT

BACKGROUND: Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES: We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS: We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS: The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS: This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.


Subject(s)
Endocrine Disruptors , Parabens , Phenols , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Phthalic Acids/urine , Phenols/urine , Phenols/toxicity , Female , Infant , Pregnancy , Endocrine Disruptors/urine , Endocrine Disruptors/toxicity , Environmental Pollutants/urine , Male , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Longitudinal Studies , Child, Preschool , Anthropometry
7.
Sci Total Environ ; 932: 173014, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729362

ABSTRACT

BACKGROUND: Telomere length (TL) and mitochondrial function expressed as mitochondrial DNA copy number (mtDNAcn) are biomarkers of aging and oxidative stress and inflammation, respectively. Methylmercury (MeHg), a common pollutant in fish, induces oxidative stress. We hypothesized that elevated oxidative stress from exposure to MeHg decreases mtDNAcn and shortens TL. METHODS: Study participants are 6-11-year-old children from the HELIX multi-center birth cohort study, comprising six European countries. Prenatal and postnatal total mercury (THg) concentrations were measured in blood samples, TL and mtDNAcn were determined in child DNA. Covariates and confounders were obtained by questionnaires. Robust regression models were run, considering sociodemographic and lifestyle covariates, as well as fish consumption. Sex, ethnicity, and fish consumption interaction models were also run. RESULTS: We found longer TL with higher pre- and postnatal THg blood concentrations, even at low-level THg exposure according to the RfD proposed by the US EPA. The prenatal association showed a significant linear relationship with a 3.46 % increase in TL for each unit increased THg. The postnatal association followed an inverted U-shaped marginal non-linear relationship with 1.38 % an increase in TL for each unit increased THg until reaching a cut-point at 0.96 µg/L blood THg, from which TL attrition was observed. Higher pre- and postnatal blood THg concentrations were consistently related to longer TL among cohorts and no modification effect of fish consumption nor children's sex was observed. No association between THg exposure and mtDNAcn was found. DISCUSSION: We found evidence that THg is associated with TL but the associations seem to be time- and concentration-dependent. Further studies are needed to clarify the mechanism behind the telomere changes of THg and related health effects.


Subject(s)
DNA, Mitochondrial , Mercury , Telomere , Humans , Child , Mercury/blood , Female , Male , Europe , Environmental Exposure , Methylmercury Compounds , Oxidative Stress
8.
Environ Int ; 186: 108621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593693

ABSTRACT

In utero and children's exposure to per- and polyfluoroalkyl substances (PFAS) is a major concern in health risk assessment as early life exposures are suspected to induce adverse health effects. Our work aims to estimate children's exposure (from birth to 12 years old) to PFOA and PFOS, using a Physiologically-Based Pharmacokinetic (PBPK) modelling approach. A model for PFAS was updated to simulate the internal PFAS exposures during the in utero life and childhood, and including individual characteristics and exposure scenarios (e.g., duration of breastfeeding, weight at birth, etc.). Our approach was applied to the HELIX cohort, involving 1,239 mother-child pairs with measured PFOA and PFOS plasma concentrations at two sampling times: maternal and child plasma concentrations (6 to 12 y.o). Our model predicted an increase in plasma concentrations during fetal development and childhood until 2 y.o when the maximum concentrations were reached. Higher plasma concentrations of PFOA than PFOS were predicted until 2 y.o, and then PFOS concentrations gradually became higher than PFOA concentrations. From 2 to 8 y.o, mean concentrations decreased from 3.1 to 1.88 µg/L or ng/mL (PFOA) and from 4.77 to 3.56 µg/L (PFOS). The concentration-time profiles vary with the age and were mostly influenced by in utero exposure (on the first 4 months after birth), breastfeeding (from 5 months to 2 (PFOA) or 5 (PFOS) y.o of the children), and food intake (after 3 (PFOA) or 6 (PFOS) y.o of the children). Similar measured biomarker levels can correspond to large differences in the simulated internal exposures, highlighting the importance to investigate the children's exposure over the early life to improve exposure classification. Our approach demonstrates the possibility to simulate individual internal exposures using PBPK models when measured biomarkers are scarce, helping risk assessors in gaining insight into internal exposure during critical windows, such as early life.


Subject(s)
Alkanesulfonic Acids , Breast Feeding , Caprylates , Environmental Pollutants , Fluorocarbons , Maternal Exposure , Humans , Fluorocarbons/blood , Alkanesulfonic Acids/blood , Female , Caprylates/blood , Pregnancy , Child , Child, Preschool , Infant , Environmental Pollutants/blood , Maternal Exposure/statistics & numerical data , Infant, Newborn , Male , Environmental Exposure/analysis , Diet , Prenatal Exposure Delayed Effects , Adult
9.
Environ Int ; 186: 108584, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513557

ABSTRACT

BACKGROUND: Most previous studies investigating the associations between prenatal exposure to phthalates and fetal growth relied on measurements of phthalate metabolites at a single time point. They also focused on weight at birth without assessing growth over pregnancy, preventing the identification of potential periods of fetal vulnerability. We examined the associations between pregnancy urinary phthalate metabolites and fetal growth outcomes measured twice during pregnancy and at birth. METHODS: For 484 pregnant women, we assessed 13 phthalate and two 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) metabolite concentrations from two within-subject weekly pools of up to 21 urine samples (median of 18 and 34 gestational weeks, respectively). Fetal biparietal diameter, femur length, head and abdominal circumferences were measured during two routine pregnancy follow-up ultrasonographies (median 22 and 32 gestational weeks, respectively) and estimated fetal weight (EFW) was calculated. Newborn weight, length, and head circumference were measured at birth. Associations between phthalate/DINCH metabolite and growth parameters were investigated using adjusted linear regression and Bayesian kernel machine regression models. RESULTS: Detection rates were above 99 % for all phthalate/DINCH metabolites. While no association was observed with birth measurements, mono-iso-butyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) were positively associated with most fetal growth parameters measured at the second trimester. Specifically, MiBP was positively associated with biparietal diameter, head and abdominal circumferences, while MnBP was positively associated with EFW, head and abdominal circumferences, with stronger associations among males. Pregnancy MnBP was positively associated with biparietal diameter and femur length at third trimester. Mixture of phthalate/DINCH metabolites was positively associated with EFW at second trimester. CONCLUSIONS: In this pregnancy cohort using repeated urine samples to assess exposure, MiBP and MnBP were associated with increased fetal growth parameters. Further investigation on the effects of phthalates on child health would be relevant for expanding current knowledge on their long-term effects.


Subject(s)
Fetal Development , Maternal Exposure , Phthalic Acids , Humans , Phthalic Acids/urine , Female , Pregnancy , Fetal Development/drug effects , Adult , Cohort Studies , Environmental Pollutants/urine , Male , Infant, Newborn , Young Adult , Birth Weight/drug effects
10.
Environ Int ; 185: 108490, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364572

ABSTRACT

Chemical exposures often occur in mixtures and exposures during pregnancy may lead to adverse effects on the fetal brain, potentially reducing lower cognitive abilities and fine motor function of the child. We investigated the association of mothers exposure to a mixture of chemicals during pregnancy (i.e., organochlorine compounds, per- and polyfluoroalkyl substances, phenols, phthalates, organophosphate pesticides) with cognitive abilties and fine motor function in their children. We studied 1097 mother-child pairs from five European cohorts participating in the Human Early Life Exposome study (HELIX). Measurement of 26 biomarkers of exposure to chemicals was performed on urine or blood samples of pregnant women (mean age 31 years). Cognitive abilities and fine motor function were assessed in their children (mean age 8 years) with a battery of computerized tests administered in person (Ravens Coloured Progressive Matrices, Attention Network Test, N-back Test, Trail Making Test, Finger Tapping Test). We estimated the joint effect of prenatal exposure to chemicals on cognitive abilities and fine motor function using the quantile-based g-computation method, adjusting for sociodemographic characteristics. A quartile increase in all the chemicals in the overall mixture was associated with worse fine motor function, specifically lower scores in the Finger Tapping Test [-8.5 points, 95 % confidence interval (CI) -13.6 to -3.4; -14.5 points, 95 % CI -22.4 to -6.6, and -18.0 points, 95 % CI -28.6 to -7.4) for the second, third and fourth quartile of the overal mixture, respectively, when compared to the first quartile]. Organochlorine compounds, phthalates, and per- and polyfluoroalkyl substances contributed most to this association. We did not find a relationship with cognitive abilities. We conclude that exposure to chemical mixtures during pregnancy may influence neurodevelopment, impacting fine motor function of the offspring.


Subject(s)
Environmental Pollutants , Fluorocarbons , Hydrocarbons, Chlorinated , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Adult , Child , Maternal Exposure/adverse effects , Cognition , Environmental Pollutants/toxicity
13.
Sci Rep ; 13(1): 21291, 2023 12 02.
Article in English | MEDLINE | ID: mdl-38042944

ABSTRACT

Little is known about exposure determinants of acrylamide (AA), a genotoxic food-processing contaminant, in Europe. We assessed determinants of AA exposure, measured by urinary mercapturic acids of AA (AAMA) and glycidamide (GAMA), its main metabolite, in 3157 children/adolescents and 1297 adults in the European Human Biomonitoring Initiative. Harmonized individual-level questionnaires data and quality assured measurements of AAMA and GAMA (urine collection: 2014-2021), the short-term validated biomarkers of AA exposure, were obtained from four studies (Italy, France, Germany, and Norway) in children/adolescents (age range: 3-18 years) and six studies (Portugal, Spain, France, Germany, Luxembourg, and Iceland) in adults (age range: 20-45 years). Multivariable-adjusted pooled quantile regressions were employed to assess median differences (ß coefficients) with 95% confidence intervals (95% CI) in AAMA and GAMA (µg/g creatinine) in relation to exposure determinants. Southern European studies had higher AAMA than Northern studies. In children/adolescents, we observed significant lower AA associated with high socioeconomic status (AAMA:ß = - 9.1 µg/g creatinine, 95% CI - 15.8, - 2.4; GAMA: ß = - 3.4 µg/g creatinine, 95% CI - 4.7, - 2.2), living in rural areas (AAMA:ß = - 4.7 µg/g creatinine, 95% CI - 8.6, - 0.8; GAMA:ß = - 1.1 µg/g creatinine, 95% CI - 1.9, - 0.4) and increasing age (AAMA:ß = - 1.9 µg/g creatinine, 95% CI - 2.4, - 1.4; GAMA:ß = - 0.7 µg/g creatinine, 95% CI - 0.8, - 0.6). In adults, higher AAMA was also associated with high consumption of fried potatoes whereas lower AAMA was associated with higher body-mass-index. Based on this large-scale study, several potential determinants of AA exposure were identified in children/adolescents and adults in European countries.


Subject(s)
Acrylamide , Biological Monitoring , Adolescent , Humans , Adult , Child , Child, Preschool , Young Adult , Middle Aged , Acrylamide/toxicity , Creatinine , Biomarkers , Surveys and Questionnaires
14.
Environ Sci Technol ; 57(48): 19202-19213, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37931007

ABSTRACT

We assessed phthalate-hormone associations in 382 pregnant women of the new-generation SEPAGES cohort (2014-2017, France) using improved exposure and outcome assessments. Metabolites from seven phthalate compounds and the replacement di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (≈21 samples/trimester). Metabolites from five steroid hormones were measured in maternal hair samples collected at delivery, reflecting cumulative levels over the previous weeks to months. Adjusted linear regression and Bayesian weighted quantile sum (BWQS) mixture models were performed. Each doubling in third-trimester urinary mono-benzyl phthalate (MBzP) concentrations was associated with an average increase of 13.3% (95% CI: 2.65, 24.9) for ∑cortisol, 10.0% (95% CI: 0.26, 20.7) for ∑cortisone, 17.3% (95% CI: 1.67, 35.4) for 11-dehydrocorticosterone, and 16.2% (95% CI: 2.20, 32.1) for testosterone, together with a suggestive 10.5% (95% CI: -1.57, 24.1) increase in progesterone levels. Each doubling in second-trimester urinary di-isononyl phthalate (DiNP) concentrations was inversely associated with testosterone levels (-11.6%; 95% CI: -21.6, -0.31). For most hormones, a nonsignificant trend toward a positive phthalate mixture effect was observed in the third but not in the second trimester. Our study showed that exposure to some phthalate metabolites, especially MBzP, may affect adrenal and reproductive hormone levels during pregnancy.


Subject(s)
Environmental Pollutants , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Bayes Theorem , Phthalic Acids/metabolism , Steroids , Testosterone , Hair/metabolism , Environmental Exposure , Maternal Exposure
15.
Environ Int ; 182: 108344, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016387

ABSTRACT

Outcome-wide analysis can offer several benefits, including increased power to detect weak signals and the ability to identify exposures with multiple effects on health, which may be good targets for preventive measures. Recently, advanced statistical multivariate techniques for outcome-wide analysis have been developed, but they have been rarely applied to exposome analysis. In this work, we provide an overview of a selection of methods that are well-suited for outcome-wide exposome analysis and are implemented in the R statistical software. Our work brings together six different methods presenting innovative solutions for typical problems arising from outcome-wide approaches in the context of the exposome, including dependencies among outcomes, high dimensionality, mixed-type outcomes, missing data records, and confounding effects. The identified methods can be grouped into four main categories: regularized multivariate regression techniques, multi-task learning approaches, dimensionality reduction approaches, and bayesian extensions of the multivariate regression framework. Here, we compare each technique presenting its main rationale, strengths, and limitations, and provide codes and guidelines for their application to exposome data. Additionally, we apply all selected methods to a real exposome dataset from the Human Early-Life Exposome (HELIX) project, demonstrating their suitability for exposome research. Although the choice of the best method will always depend on the challenges to be faced in each application, for an exposome-like analysis we find dimensionality reduction and bayesian methods such as reduced rank regression (RRR) or multivariate bayesian shrinkage priors (MBSP) particularly useful, given their ability to deal with critical issues such as collinearity, high-dimensionality, missing data or quantification of uncertainty.


Subject(s)
Exposome , Humans , Environmental Exposure , Bayes Theorem
16.
Toxics ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37888670

ABSTRACT

Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM.

17.
Front Neurol ; 14: 1124943, 2023.
Article in English | MEDLINE | ID: mdl-37662050

ABSTRACT

Introduction: Cerebral palsy (CP) is the most common motor disability in childhood, but its causes are only partly known. Early-life exposure to toxic metals and inadequate or excess amounts of essential elements can adversely affect brain and nervous system development. However, little is still known about these as perinatal risk factors for CP. This study aims to investigate the associations between second trimester maternal blood levels of toxic metals, essential elements, and mixtures thereof, with CP diagnoses in children. Methods: In a large, population-based prospective birth cohort (The Norwegian Mother, Father, and Child Cohort Study), children with CP diagnoses were identified through The Norwegian Patient Registry and Cerebral Palsy Registry of Norway. One hundred forty-four children with CP and 1,082 controls were included. The relationship between maternal blood concentrations of five toxic metals and six essential elements and CP diagnoses were investigated using mixture approaches: elastic net with stability selection to identify important metals/elements in the mixture in relation to CP; then logistic regressions of the selected metals/elements to estimate odds ratio (OR) of CP and two-way interactions among metals/elements and with child sex and maternal education. Finally, the joint effects of the mixtures on CP diagnoses were estimated using quantile-based g-computation analyses. Results: The essential elements manganese and copper, as well as the toxic metal Hg, were the most important in relation to CP. Elevated maternal levels of copper (OR = 1.40) and manganese (OR = 1.20) were associated with increased risk of CP, while Hg levels were, counterintuitively, inversely related to CP. Metal/element interactions that were associated with CP were observed, and that sex and maternal education influenced the relationships between metals/elements and CP. In the joint mixture approach no significant association between the mixture of metals/elements and CP (OR = 1.00, 95% CI = [0.67, 1.50]) was identified. Conclusion: Using mixture approaches, elevated levels of copper and manganese measured in maternal blood during the second trimester could be related to increased risk of CP in children. The inverse associations between maternal Hg and CP could reflect Hg as a marker of maternal fish intake and thus nutrients beneficial for foetal brain development.

18.
Environ Health Perspect ; 131(8): 87006, 2023 08.
Article in English | MEDLINE | ID: mdl-37556305

ABSTRACT

BACKGROUND: Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES: We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS: Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼21 samples/trimester) and at 2 months and 1-year of age (∼7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS: Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (ΣDEHP), mono-ethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (ß=0.78; 95% CI: 0.00, 1.55) and MEP (ß=0.92; 95% CI: -0.11, 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and ΣDEHP were associated with worse Social Awareness (ß=0.25; 95% CI: 0.01, 0.50) and Social Communication (ß=0.43; 95% CI: -0.02, 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1=1.38; 95% credible interval (CrI): -0.18, 2.97], Social Awareness (Beta 1=0.37; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1=0.91; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p=0.07). DISCUSSION: The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Phthalic Acids , Triclosan , Pregnancy , Female , Infant, Newborn , Infant , Humans , Bayes Theorem , Phthalic Acids/urine , Mothers , Triclosan/urine , Dibutyl Phthalate , Phenols/urine , Environmental Exposure , Environmental Pollutants/urine
19.
Environ Pollut ; 335: 122197, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37481027

ABSTRACT

A previous study reported positive associations of maternal urinary concentrations of triclosan, a synthetic phenol with widespread exposure in the general population, with placental DNA methylation of male fetuses. Given the high number of comparisons performed in -omic research, further studies were needed to validate and extend on these findings. Using a cohort of male and female fetuses with repeated maternal urine samples to assess exposure, we studied the associations between triclosan and placental DNA methylation. We assessed triclosan concentrations in two pools of 21 urine samples collected among 395 women from the SEPAGES cohort. We used Infinium Methylation EPIC arrays to measure DNA methylation in placental biopsies collected at delivery. We performed a candidate study restricted to a set of candidate CpGs (n = 500) identified in a previous work as well as an exploratory epigenome-wide association study to investigate the associations between triclosan and differentially methylated probes and regions. Analyses were conducted on the whole population and stratified by child's sex. Mediation analysis was performed to test whether heterogeneity of placental tissue may mediate the observed associations. In the candidate approach, we confirmed 18 triclosan-associated genes when both sexes were considered. After stratification for child's sex, triclosan was associated with 72 genes in females and three in males. Most of the associations were positive and several CpGs mapped to imprinted genes: FBRSL1, KCNQ1, RHOBTB3, and SMOC1. A mediation effect by placental tissue heterogeneity was identified for most of the observed associations. In the exploratory analysis, we identified a few isolated associations in the sex-stratified analysis. In line with a previous study on male placentas, our approach revealed several positive associations between triclosan exposure and placental DNA methylation. Several identified loci mapped to imprinted genes.


Subject(s)
Prenatal Exposure Delayed Effects , Triclosan , Child , Humans , Female , Pregnancy , Male , Placenta/metabolism , DNA Methylation , Triclosan/toxicity , Triclosan/metabolism , Prenatal Exposure Delayed Effects/metabolism
20.
Environ Res ; 234: 116544, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37406719

ABSTRACT

BACKGROUND: Poly- and perfluoroalkyl substances (PFAS) are used in a wide range of products. Experimental studies suggested impaired lung development and pro-inflammatory response following exposure to some PFAS. We aimed to assess the associations between prenatal exposure to PFAS and children respiratory health. METHODS: The study is based on 433 mother-child pairs. 26 PFAS were measured in maternal serum collected during pregnancy. Lung function parameters were measured at 2 months using tidal breathing flow-volume loops and multiple-breath nitrogen washout and at 36 months using oscillometry. Incidence of respiratory health diseases (asthma, wheeze, bronchitis, bronchiolitis) in the first 36 months of life was assessed by repeated questionnaires. A cluster-based analysis was applied to identify prenatal PFAS exposure patterns. Adjusted linear and logistic regressions were performed to assess the associations between PFAS exposure patterns as well as individual PFAS, and each respiratory health parameter. RESULTS: We excluded 13 PFAS due to low quantification (<5%). Relying on the 13 remaining PFAS, we identified three exposure clusters, characterized by low (N = 163), medium (N = 236) and high (N = 51) pregnancy PFAS concentrations. Compared to children belonging to the low exposure group, children in the moderate exposure group had higher reactance at 7 Hz (X7) and lower frequency dependence of resistance between 7 Hz and 19 Hz (R7-19) at 36 months, suggesting better lung function. No association of any exposure metric was detected with respiratory diseases in the first 3 years of life. CONCLUSIONS: Our study relying on both mixture and uni-pollutant analyses, does not provide evidence for a deleterious effect of prenatal PFAS exposure on respiratory health at an early age.


Subject(s)
Alkanesulfonic Acids , Asthma , Environmental Pollutants , Fluorocarbons , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Fluorocarbons/toxicity , Environmental Pollutants/toxicity , Asthma/epidemiology , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL
...